高阶玩法:Deepseek+Coze打造一站式爆款图文工作流(建议收藏)

由于自己做自媒体过程中,制作图文比较费时费力,因此最近在研究如何使用deepseek和coze一键式制作爆款图文。

比如下面这种爆款图文,主要分享一些食谱,通过搭配食谱和图片以及做法和作用来吸引有需求的人。

图片

图片

那么可不可以通过coze直接通过我们提供的小红书链接直接生成新的图文呢?

这里有几个要点:

  1. 读取提供的小红书链接,并自动识别图片上的文案,获取标题和文案内容
  2. 根据获取到的标题和文案内容,使用deepseek进行改写,改写成新的内容
  3. 根据新的内容,通过coze生成新的主图和内容图

下面,我们一步一步来实现我们需要的效果。

读取提供的小红书链接,并自动识别图片上的文案,获取标题和文案内容

这里我使用的是python和umi-ocr联合实现小红书链接图片的提取,首先通过python获取小红书链接的图片和文案:

图片

获取了之后,我们调用本地的umi-ocr软件,批量对我们获取的图片进行识别。

图片

UMI-OCR 是一款免费开源的离线OCR文字识别工具,支持从图片或截图中快速提取文字内容。其特点包括:

多语言识别:专注中文场景优化,同时支持英文、日文等多语种。

离线运行:无需联网,保护隐私,处理速度高效。

批量处理:可一键识别多张图片/PDF,导出为结构化文本。

简洁易用:提供可视化界面,支持Windows/Linux系统,适合办公、学习等场景。

适用于文档数字化、截图文字提取、资料整理等需求,是本地化OCR应用的轻量级解决方案。

这样我们就获取到了图片的文案以及标题和内容。

调用coze图文生成

主图生成

主图这里比较简单,我们通过一个画板和一个图像工作流就可以完成,主要是生成一个大标题和一张相关的图像。

图片

看一下生成效果:

图片

这里我使用的是张大千的夸张风格,需要其他风格的也可以自己自行测试。

内容图

接下来是内容图的生成,内容图主要是包含一个大标题、相关图像、小标题还有文案。图片

这里我们需要用到循环,因为内容图不止一张,但是怎么将提取到的内容分成不同页的内容呢,我们这里就需要用到deepseek了。

在coze中调用deepseek的步骤如下:

  1. 在添加节点中找到大模型

图片

  1. 在模型中找到deepseek

图片

  1. 写上提示词图片
将{{input}}中的内容按结构分成一个json中的多个内容,
每个中分别有小标题、内容。每个json中只包含一个小标题和对应内容。
生成的内容要符合逻辑,比如,如果是食谱类的,
那么应该是按功效、做法来分,如果是其他的,按类似的逻辑进行结构内容划分。
输出样式:[{"小标题":xiaobiaoti,"内容":"内容"},
{"小标题":xiaobiaoti1,"内容":"内容1"}]

这样,deepseek给我们的就是每页的小标题和对应的内容了。

图片

然后我们需要使用coze的循环模块,coze的循环模块可以帮助我们快速的完成重复性的工作。

循环图里主要包括一个图像生成和一个画板,画板上设置小标题和图像即可,deepseek给我们返回几个内容,我们就生成几张内容图就行。

图片

最终效果:

图片

这样我们就根据输入的小红书爆款图文链接自动生成了对应的新的图文,完全原创!或者我们也可以根据对应的主题,让deepseek帮我们生成对应的图文,也是完全OK的。

DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。

DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。

DeepSeek的优点

read-normal-img

掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。

那么应该如何学习大模型

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。

read-normal-img

掌握大模型技术你还能拥有更多可能性:

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

read-normal-img

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

read-normal-img

👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

read-normal-img

read-normal-img

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

read-normal-img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

内容概要:本文介绍了如何利用DeepSeek+Coze打造对标账号监控智能体,实现对短视频平台上竞争对手内容的自动化监控。文章首先解释了对标账号监控的概念及其重要性,包括内容采集、数据分析和趋势洞察等方面。接着指出了传统对标账号监控中存在的痛点,如高昂的工具费用、编程难度大、手动收集耗时等问题。然后详细描述了智能体的整体搭建流程,包括创建工作流和创建智能体两个主要步骤,具体展示了从获取用户基础信息到筛选昨天发布的视频,再到将信息整理为飞书表格可用数据的全过程。最后总结了智能体的优势,如无需购买昂贵工具、无需复杂编程知识、实现全流程自动化等,使得用户能够节省大量时间用于内容创作和运营策略制定。; 适合人群:从事短视频运营、市场营销等相关工作的人员,尤其是那些希望提高工作效率、降低运营成本的人群。; 使用场景及目标:①自动追踪竞争对手在短视频平台上的动态,包括内容发布情况、互动数据等;②及时发现行业热点和竞争对手策略变化,以便快速调整自身的内容策略;③减少手动数据采集的工作量,提高数据准确性和时效性。; 其他说明:此智能体的创建不仅解决了传统对标账号监控中的诸多问题,还为用户提供了一种高效、便捷的方式来进行竞品分析。用户可以根据实际需求调整工作流中的参数设置,以适应不同的监控需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值