基于DeepSeek利用langchain实现一个RAG系统

基于DeepSeek利用langchain实现一个RAG系统

源代码

http://www.gitpp.com/paperagent/deepseek-quick-rag

快速上手一个RAG系统,在这波DeepSeek热潮中吃到红利

LangChain与DeepSeek共同实现RAG项目的介绍:关于LangChain

LangChain是一个功能强大的框架,旨在帮助开发人员使用语言模型(LLM)构建端到端的应用程序。它提供了一套工具、组件和接口,极大地简化了创建由大型语言模型和聊天模型支持的应用程序的过程。LangChain的核心价值在于为各种LLMs提供通用的接口,降低开发者的学习成本,使开发者能够快速地将复杂的LLMs应用落地。

LangChain的主要功能和特点

  1. 模型集成与管理

    • LangChain支持多种LLMs,如OpenAI的GPT系列、DeepSeek等,为它们提供了标准的接口。
    • 开发者可以轻松地在项目中集成和管理不同的语言模型,根据需求选择合适的模型来完成任务。
  2. 组件化与模块化

    • LangChain采用了组件化的设计思路,将应用程序的不同部分拆分成独立的组件。
    • 这些组件包括模型输入输出管理、数据连接、内存管理、链式调用、代理和回调等,它们可以灵活地组合在一起,实现复杂的功能。
  3. 数据连接与处理

    • LangChain支持多种数据源,如文档、数据库、API等,并提供了丰富的工具来加载和处理这些数据。
    • 它支持文本嵌入、向量存储和检索,为RAG等需要外部知识支持的应用场景提供了基础。
  4. 链式调用与流程管理

    • LangChain允许开发者定义一系列的操作或组件,通过链式调用的方式将它们串联起来,形成一个完整的工作流程。
    • 这种链式调用机制使得开发者可以灵活地组织代码,提高代码的可读性和可维护性。
  5. 提示工程

    • LangChain提供了丰富的提示模板和自定义提示的能力,帮助开发者设计有效的输入提示,以优化语言模型的输出。
    • 通过对提示的精心设计,开发者可以引导语言模型生成更符合需求的内容。
  6. 内存与状态管理

    • LangChain支持内存管理,允许开发者在组件调用之间维护状态。
    • 这对于需要连续对话或上下文感知的应用场景非常有用。
  7. 评估与优化

    • LangChain提供了工具来评估语言模型的性能,帮助开发者了解模型的优点和不足。
    • 通过评估结果,开发者可以对模型进行优化,提高应用的准确性和效率。

LangChain在RAG项目中的应用

在利用DeepSeek和LangChain共同实现RAG项目的过程中,LangChain主要承担以下角色:

  1. 管理RAG工作流

    • LangChain负责将文档加载、向量存储、检索和LLM交互等步骤串联起来,形成一个完整的工作流程。
    • 它确保各个组件能够协同工作,实现RAG系统的核心功能。
  2. 支持文档加载与处理

    • LangChain提供了丰富的文档加载工具,如PDFPlumberLoader等,用于加载和处理不同类型的文档。
    • 它还支持文本分割和嵌入,为文档的向量存储和检索打下基础。
  3. 实现检索功能

    • LangChain支持使用ChromaDB等向量存储系统来存储和检索文本向量。
    • 它允许开发者定义检索策略,从向量存储中快速找到与问题相关的文本片段。
  4. 与DeepSeek等LLMs交互

    • LangChain为DeepSeek等LLMs提供了标准的接口,使得开发者可以轻松地与它们进行交互。
    • 它支持将检索到的上下文传递给DeepSeek等LLMs,以生成高质量的回答。

总结

LangChain是一个功能强大的框架,为利用语言模型构建端到端的应用程序提供了有力的支持。在RAG项目中,LangChain通过管理RAG工作流、支持文档加载与处理、实现检索功能以及与LLMs交互等方式,发挥了关键作用。通过LangChain,开发者可以更加高效地构建出具有强大检索和生成能力的RAG系统。

基于DeepSeek利用langchain实现一个RAG系统

源代码

http://www.gitpp.com/paperagent/deepseek-quick-rag

DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。

DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。

DeepSeek的优点

read-normal-img

掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。

那么应该如何学习大模型

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。

read-normal-img

掌握大模型技术你还能拥有更多可能性:

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

read-normal-img

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

read-normal-img

👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

read-normal-img

read-normal-img

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

read-normal-img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值