当Langflow遇见DeepSeek:可视化开发工作流的新解法

最近读者后台留言,问有没有好用的工作流平台。确实,对于大多数流程相对固定的任务,采用工作流完成确实是最优解,这种需求一直存在。

今天要吹的这款神器叫做Langflow——一个能让小白用可视化拖拽玩转RAG应用、多Agent系统的神器。这项目在GitHub上已经收获47k star,更新非常频繁,社区非常活跃。

这款Langflow工作流搭配现在火热的DeepSeek,更是让你如虎添翼。

今天就带大家一探究竟!

Langflow

img

一、AI界的乐高积木

想象一下,用拖拽积木的方式就能搭建AI工作流——这就是Langflow的核心魔法✨。它把大语言模型、数据库、向量数据库、API接口都变成了可视化组件,并且已经支持 MCP(Model Context Protocol),能通过MCP进行扩展,以实现脱虚向实。

项目核心优势:

✅ Python+Typescript开发,私有部署只需一行命令,无需其他依赖

✅ 支持Windows、Linux、Mac等平台

✅ 适配 OpenAI/DeepSeek/Ollama 等20余种主流大模型接口

✅ 支持Chroma/Milvus/Pinecone等20余种向量数据库

✅ 全流程可视化编排,支持if-else等复杂逻辑

✅ 支持导出为Python代码或API服务

✅ 支持各种Agent,支持MCP,扩展系统外能力

img

二、极速部署

比起动辄需要GPU集群的AI项目,在Windows系统中,Langflow的安装非常简单,先安装Python 3.10 或 3.12 (建议在conda环境下):

使用uv安装(推荐):

uv pip install langflow

直接使用 pip 安装:

pip install langflow

运行:

python -m langflow run

首次运行的时间比较长,出现以下就表示成功运行了 :

img

浏览器打开http://localhost:7860,你的AI工作室就准备就绪啦!Windows/Mac/Linux全平台通吃~

二、实战:博客生成器

Langflow 内置了不少工作流模版,包括市场研究、SEO关键词生成器、Blog生成器、Ins文案生成、文档问答等。

img

img

从模版中选择Blog Writer,即生成一个新的项目。

img

从上述工作流可以读懂他的流程:从两个设定的URL中读取网页,然后提取正文文字。从 Instructs 模块中读取用户指令,然后一起给到 Prompt 模块。

Prompt模块的输入有 instructions以及refrences两项,而Template中内容如下:

在这里插入图片描述

上面表示将输入的 refrences 和 instructions 文本内容,直接放到上述{references} 和 {instructions} 里,形成最终的用户提示词。

这个提示词给到OpenAI模块。

OpenAI模块会调用OpenAI的chat接口,由gpt-4o-mini进行博文的编写,最后输出到 Chat Output。

这里我们将模型改为调DeepSeek的接口。

点击OpenAI模块上悬浮工具栏的"Controls"

img

弹出设置页中,修改 API Base和API Key,按 DeepSeek 文档(https://api-docs.deepseek.com/zh-cn/)填写。

其中兼容OpenAI的Base为 : https://api.deepseek.com/v1

填入您DeepSeek的API Key,形如 sk-xxxxx

img

Model Name 这项这里由于只有选项,不能填指定值,所以无需修改。

关闭设置页,设置自动保存,然后点击悬浮工具栏上的"Code"

img

在 build_model 函数中,将 model_name 强制修改为 “deepseek-chat”,这表示模型名采用 "deepseek-chat"这个值,而不用界面设置的 gpt-4o-mini。然后点击右下角的 Check & Save 按钮。

img

Langflow的强大也在于此,可以很方便修改每个节点中的行为,不只有界面。

即便不会Python也没关系,借助大模型,即可以轻松进行功能添加。

所有配置工作完成了,点击 Chat Output 右上角的运行小图标

img

整个工作流就运行起来了

img

可以看到每个节点右上角有运行状态,节点完成后还会显示消耗的时间,一目了然。

三、更多场景

Langflow提供了大量的处理节点,可以满足你各种需求:

场景1:让AI帮你写周报。

将你每天的工作进行记录,作为输入提供给Langflow。

写好一个标准的周报示例,内置在上述 Template 中。

每周只需要运行一次,工作流即帮你生成当周的周报。

每周仅需点击生成按钮,即可获得符合企业规范的完整周报文档,告别重复性文档整理,让您专注核心工作,效率提升60%以上。

场景2:简单文档问答

img

场景3:RAG

img

Langflow提供智能文本分块模块,可高效处理长文档并实现结构化存储。系统通过语义解析将文本智能拆分为逻辑连贯的段落单元,并精准嵌入向量数据库构建知识图谱。

当用户发起查询时,检索模块先进的向量检索,首先从知识库中快速定位相关语义片段,继而通过智能整合引擎将精选内容提交给大语言模型,最终生成精准可靠的定制化回答。

RAG工作流有效解决了长文本处理中的信息碎片化难题,显著提升了知识检索效率和问答准确率。

四、进阶

除在图形化创建和执行流程以外,Langflow还支持将流程导出为Json文件,与langchain一起使用,以程序化的方式帮你完成定时、批量的任务。

看完这篇还在等什么?快去搭个AI助理,光明正大摸鱼吧!(老板问起就说在学习AGI技术🧠)

项目主页: https://github.com/langflow-ai/langflow

DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。

DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。

DeepSeek的优点

read-normal-img

掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。

那么应该如何学习大模型

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。

read-normal-img

掌握大模型技术你还能拥有更多可能性:

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

read-normal-img

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

read-normal-img

👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

read-normal-img

read-normal-img

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

read-normal-img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值