DeepSeek爆了,普通人如何3小时完全从0训练自己的大模型

今天为大家介绍一个特别实用的开源项目 - MiniMind。它让我们可以用普通电脑,在短短 3 小时内训练出一个迷你版的 ChatGPT!

为防止误读,「最快 3 小时」是指您需要具备>作者本人硬件配置的机器,具体规格的详细信息将在下文提供。

为什么这个项目这么特别?

目前市面上的大语言模型动辄上百亿参数,训练成本高昂。就算是自己想学习和研究,也会被巨大的硬件门槛挡在门外。而 MiniMind 通过精妙的设计,把模型参数压缩到了最小,让个人开发者也能亲手训练 AI 模型!

最小版本仅有 26M 大小(约为 GPT-3 的 1/7000),一张普通的游戏显卡就能运行。项目提供了完整的训练流程:

  1. 基础语言能力训练(预训练)
  2. 对话能力训练(指令微调)
  3. 快速适应新任务(LoRA 微调)
  4. 优化回答质量(DPO 偏好对齐)

环境需要

CPU: Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz
内存:128 GB
显卡:NVIDIA GeForce RTX 3090(24GB) * 2
环境:python 3.9 + Torch 2.1.2 + DDP单机多卡训练
  • Ubuntu == 20.04
  • Python == 3.9
  • Pytorch == 2.1.2
  • CUDA == 12.2
  • requirements.txt(本项目环境依赖)

实际应用场景

1. 个性化助手开发

你可以训练一个针对特定领域的 AI 助手,比如:

  • 客服机器人:根据公司产品知识库训练
  • 教育辅导:针对特定学科的习题讲解
  • 行业助手:为特定行业提供专业建议

2. 技术学习与研究

  • 了解大语言模型的工作原理
  • 实践各种训练方法
  • 尝试模型优化和改进

3. 产品原型验证

  • 快速验证 AI 产品创意
  • 测试不同场景下的效果
  • 收集用户反馈进行迭代

技术亮点解析

轻量级架构

  • 采用 Transformer 的 Decoder-Only 结构
  • 使用 RMSNorm 预标准化提升性能
  • 引入旋转位置编码处理长文本

创新的专家模型版本(MoE)

  • 提供 4×26M 的混合专家模型
  • 通过专家分工提升模型能力
  • 保持较低的计算资源需求

灵活的部署选项

  • 支持单卡/多卡训练
  • 兼容主流深度学习框架
  • 提供网页交互界面

上手有多简单?

只需几步就能开始:

# 1. 克隆项目
git clone https://github.com/jingyaogong/minimind.git

# 2. 安装依赖
pip install -r requirements.txt

# 3. 开始对话测试
python 2-eval.py

如果想要可视化界面,还可以使用内置的网页版:

streamlit run fast_inference.py

定制大模型

1. 克隆项目代码

git clone https://github.com/jingyaogong/minimind.git
cd minimind

2. 环境安装

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

# 测试torch是否可用cuda
import torch
print(torch.cuda.is_available())

如果不可用,请自行去 torch_stable 下载 whl 文件安装。参考链接,

https://blog.csdn.net/weixin_45456738/article/details/141029610

3. 自己训练数据集

  • 下载数据集放到./dataset目录下

  • python data_process.py 命令处理数据集,例如 pretrain 数据提前进行 token-encoder、sft 数据集抽离 qa 到 csv 文件

  • ./model/LMConfig.py

    这里仅需调整 dim 和 n_layers 和 use_moe 参数,分别是(512+8)(768+16),对应于minimind-v1-smallminimind-v1

  • python 1-pretrain.py 执行预训练,得到 pretrain_*.pth 作为预训练的输出权重

  • python 3-full_sft.py 执行指令微调,得到 full_sft_*.pth 作为指令微调的输出权重

  • python 4-lora_sft.py 执行 lora 微调(非必须)

  • python 5-dpo_train.py 执行 DPO 人类偏好强化学习对齐(非必须)

持续进化中

项目正在快速发展,目前已支持:

  • 文本对话:流畅的中英文交互
  • 视觉理解:可以理解和描述图像
  • 知识更新:持续优化训练数据
  • 性能提升:不断改进模型结构

最后

MiniMind 降低了 AI 开发的门槛,让更多人能够参与到大语言模型的探索中来。无论你是:

  • 想入门 AI 的开发者
  • 需要定制化 AI 助手的企业
  • 对语言模型感兴趣的研究者

这个项目都能帮你快速起步,并在实践中不断成长。项目完全开源,想要了解更多 MiniMind 项目信息的读者可以查看项目地址:

https://github.com/jingyaogong/minimind

DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。

DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。

DeepSeek的优点

read-normal-img

掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。

那么应该如何学习大模型

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。

read-normal-img

掌握大模型技术你还能拥有更多可能性:

• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;

• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;

• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;

• 更优质的项目可以为未来创新创业提供基石。

可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

read-normal-img

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

read-normal-img

👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

read-normal-img

read-normal-img

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

read-normal-img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值