用Langchain创建一个可以总结网页内容的Agent

去年的时候我写过一篇关于OpenAi Function Call的实践文章,就是用Function Call的功能实现抓取并总结网页内容的功能,当时写了还算比较多的代码,最近在学习了LangChain的使用后,发现LangChain封装的很好了,同样的功能几乎不需要写太多的代码了。

接下来我们还是以抓取并总结网页内容的Agent为例,来看下使用LangChain如何实现类似的功能,当然你要看懂这篇文章,必须对LangChain有一定的了解,如果完全没有任何了解,建议先去看下LangChain官网的一些入门概念,废话不说我们直接开始。

网页加载工具定义

我们首先就是要定义个可以加载到网页内容的工具,这次我们直接使用LangChain提供好的WebBaseLoader。另外借助LangChain的装饰器@tool,我也仅需要正常写一个函数并表明出入参类型和功能即可,不用提供像之前那样复杂的函数定义schema。

代码语言:javascript

复制

@tool
def web_loader(url: str) -> str:
    """抓取url对应网页的内容"""
    loader = WebBaseLoader(url)
    docs = loader.load()
    return docs[0].page_content

创建llm并绑定工具

代码语言:javascript

复制

llm = ChatOpenAI(model="gpt-3.5-turbo", max_tokens=4096)
tools = [web_loader]
llm_with_tools = llm.bind_tools(tools)

llm我使用的是OpenAi的gpt3.5,你也可以使用其他模型,另外ChatOpenAI有很多其他参数可调,你可以按自己需求调整。这里最关键的一步,就是需要将llm和工具用bind_tools()绑定在一起,不绑定的话后续llm是不知道有哪些tool可以调用的。

创建prompt

有些同学说prompt不是就一句话的事吗,还需要单独写! 我开始也是随意创建了一个prompt,结果调用报错了。 原来带有函数调用Agent的prompt是有特殊要求的,其中除了要包含input之外,还需要包含agent_scratchpad占位符,agent_scratchpad的作用就是在prompt留出函数调用中间结果的位置:

代码语言:javascript

复制

prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "你是一个擅长对长文做总结的智能助手,可以精确提炼出长文中的要点。注意,请使用markdown格式返回结果。",
        ),
        ("placeholder", "{chat_history}"),
        ("user", "{input}"),
        MessagesPlaceholder(variable_name="agent_scratchpad"),
    ]
)

创建Agent并执行

agent 可以直接调用LangChain提供的create_tool_calling_agent方法,创建。

代码语言:javascript

复制

agent = create_tool_calling_agent(llm_with_tools, tools, prompt)

agent创建好之后,必须创建agent执行器才可以执行,这里直接实例化AgentExecutor即可。

代码语言:javascript

复制

agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=False)

直接invoke下就可以看到我们想要的结果了~~

代码语言:javascript

复制

agent_executor.invoke(
    {
        "input": "这个链接讲了什么内容? https://blog.csdn.net/xindoo/article/details/138356308?spm=1001.2014.3001.5501"
    }
)

代码语言:javascript

复制

{'input': '这个链接讲了什么内容? https://blog.csdn.net/xindoo/article/details/138356308?spm=1001.2014.3001.5501',
 'output': '这篇博文介绍了一个命令行工具ShellGPT,它是一个开源软件,可以帮助用户快速生成 shell 命令、代码片段和文档,无需再依赖外部资源(如 Google 搜索)。以下是该文章的主要内容:\n\n- ShellGPT的配置安装:支持 Linux、macOS、Windows 等操作系统,安装简单,只需使用pip安装即可。\n- 函数调用:ShellGPT允许执行系统中的函数,如播放音乐、打开网页或执行 shell 命令。提供了一些高级配置选项。\n- 角色管理:用户可以创建自定义角色,这些角色可以用来生成代码、执行 shell 命令或满足特定需求。用户可以使用命令指定特定的角色执行指令。\n- 聊天功能:用户可以和GPT进行聊天,支持单轮聊天和多轮聊天模式。\n- 写命令并执行:用户可以借助GPT的编码能力写脚本或命令,并执行。\n- 其他功能:文章提及了一些其他细节和功能,如如何通过 API从 0 到 1 构建本地 GPTs、GPT每日面试题等。\n\n总的来说,ShellGPT是一个实用的工具,可以帮助用户在命令行环境下更高效地生成命令和代码,同时还提供了一些高级功能和配置选项。'}

至此我们就完整的创建了一个可以总结网页内容的Agent。


如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值