Agent四大范式 | CRITIC:吴恩达力推Agent设计范式

摘要

近期大型语言模型(LLMs)的进展令人瞩目。然而,这些模型偶尔会出现矛盾和问题行为,比如虚构事实、编写错误代码或产生攻击性内容。与人类不同,人类通常会借助外部工具来核实和优化他们的内容,例如利用搜索引擎核实事实,或使用代码解释器进行调试。基于这一发现,我们提出了一个名为 CRITIC 的框架,它使得本质上不透明的 LLMs 能够像人类使用工具那样,验证并逐步改进自己的输出。具体来说,CRITIC 从初始输出出发,与相关工具互动,评估文本的特定方面,然后根据验证过程中收到的反馈进行调整。通过自由问答、数学程序合成和降低内容毒性的全面评估,我们发现 CRITIC 能够持续提升 LLMs 的表现。此外,研究还突显了外部反馈对于推动 LLMs 不断自我完善的至关重要性。

为什么写这篇老论文

最近吴恩达最佳在重点推广 Agent 应用开发,虽然不排除他是在推广它的有关课程商业化,但是 Agent 应用确实可能是未来通向 AGI 的途径。

之所以写这篇文章,是因为吴恩达在他推荐四种 Agent 开发范式的时候,推荐了这篇文章。

这篇是四大范式的第一篇文章,后面争取把吴恩达推荐的几篇四大范式的文章都给大家读一遍。

缘起

ChatGPT 出现后,基于 ChatGPT 等大语言模型的 Agent 应用层出不穷,也取得了巨大的进步,提升了模型的潜力。但是这些模型和应用也出现了一些问题,比如:模型幻觉、错误代码、有害内容。这些行为成为了大家实际使用 AGI 的障碍和顾虑。

为了解决这些问题,作者提出了 CRITIC 框架,使得黑盒式的大语言模型 Agent 应用可以跟外部工具进行交互,从而进行自我严重和修复,完善输出内容。CRITIC 核心是借鉴了人类的认知和批判性思维,不断验证和修正模型的输出,使得模型输出的效果更好。

在这里插入图片描述

如上图所示,CRITIC 框架包括两个步骤:首先,与外部工具(搜索引擎、代码解释器等外部工具)互动验证结果并提出批评;其次,根据这些批评对结果进行修正。这一过程可以不断重复,以促进结果的持续提升。

与传统依赖高成本注释或特定任务训练的方法相异,CRITIC 通过上下文学习和工具互动,巧妙利用 LLM 自身来识别并修正不足之处。这种方法简便易行,仅需接入文本处理工具 API 和进行少量示例演示。

针对包括 ChatGPT、Text-Davinci-003 以及开源的 LLaMA-2 变体(7B、13B 和 70B)在内的多种 LLM 进行评估,覆盖自由形式问答、数学程序合成和降低有害内容三个不同任务。结果显示,CRITIC 在各个领域均显著优于现有技术,无需额外数据或训练即可实现。比如,CRITIC 在三项问答任务中实现了 7.7 的 F1 分数提升,并降低了 79.2%的有害内容概率。

有趣的是,我们的发现所有的模型验证验证时都会出现问题。所以,过分依赖自我修正而没有外部反馈,可能只会带来微小的改进,甚至可能导致性能下降。

几个关键概念

真实性评估

如何进行真实性评估?因为大语言模型天生的幻觉,会产生大量比真实还真实的虚假信息,所以如何评估大语言模型的真实性这个问题变得非常重要。在过去,真实性评估主要集中在一些封闭域的问题,比如文本摘要、表格生成等。但是对于开放式的问答真实性评估,还没有多少有效的方法。特别对于Agent应用,会调用外部接口来获取信息生成答案。这篇文章的一大贡献就是通过外部工具交互,来自我验证输出的真实性。

工具增强模型

工具辅助的语言模型超越了单纯的记忆依赖,通过与工具的互动,提升了大语言模型Agent应用的精确度和效能,让模型得以充分发挥其推理和组合的潜能。能够通过检索系统或搜索引擎增强内容生成,利用计算器提升数学逻辑推理,通过代码解释器执行代码,甚至运用数学证明工具来验证理论。这些工具可以通过预训练、微调或上下文学习教会模型如何使用。CRITIC框架放弃了针对特定任务的训练,转而采用更为简洁和通用的上下文学习方法

效果评估

针对CRITIC框架,作者在多个任务中进行验证:开放式问答、数学程序编写、降低有害内容。三种任务分别考察框架不同方面的能力:

  • • 开放式问答:考察开放域知识相关的真实性和多跳逻辑推理;
  • • 数学程序合成:考察模型生成程序的正确性和执行能力;
  • • 降低有害内容:开放输出空间的生成安全性。

对照组包括:

  • • 经典的少样本提示法,直接给出答案;
  • • 思维链提示法,先提供逐步推理,再得出最终答案;
  • • 自洽性方法,大量生成样本后通过投票选出最佳答案;
  • • ReAct方法,结合推理和检索知识的增强策略,我们通过搜索API改进了其性能;
  • • ReAct→CRITIC在ReAct生成的检索增强结果上进一步应用CRITIC;
  • • 无工具CRITIC版本,去除搜索API,直接利用LLM生成证据;
  • • 此外,还纳入了各个数据集上当前最先进的监督学习方法。

图片

上图是作者在开放式问答任务上测试的结果,从结果中可以看出:

  • • 1)CRITIC在所有数据集和大语言模型Agent应用上都大幅度提升了最初的CoT结果,仅经过三次修正就显著优于自洽性方法。
  • • 2)CRITIC与性能更强的大语言模型Agent应用搭配使用效果更佳,无论是在text-davinci-003还是ChatGPT上,CRITIC和CRITIC*都显著提高了F1分数。
  • • 3)CRITIC结合模型内在知识和外部反馈,比单纯依赖搜索信息的ReAct表现更佳,在两种大语言模型Agent应用上都实现了F1分数的显著提升。CRITIC在大多数情况下也超过了ReAct→CRITIC,这表明只使用CRITIC会比使用CRITIC和ReAct联合使用效果更好。
  • • 4)在CRITIC中,工具互动至关重要,模型自我批评对性能提升的贡献有限,有时甚至不如初始输出。
  • • 5)CRITIC还能进一步提升基于检索方法的性能。
  • • 6)CRITIC能够有效纠正不实信息、修正错误推理并识别过时知识。

CRITIC方法的局限性

推理延迟

考虑到与外部工具互动获取真实反馈及多次推理迭代的需求,CRITIC方法会带来额外的时间成本,且成本与迭代次数成正比。

例如,在数学程序生成任务中,两次修正的时间成本约为PoT对照组成本的两倍。这种时间成本并非我们所特有,常见的提示方法如ReAct和自洽性同样为了提升性能而牺牲时间。特别是自洽性,通常需要获取大量样本进行投票。但实际上,即使只进行少量迭代(甚至一次),CRITIC也能带来显著效果。

提示词敏感

尽管实验显示CRITIC在不同大语言模型Agent应用和场景下都有效,但依赖于恰当的上下文提示。CRITIC使用的ReAct风格提示便于构建,工作量与ReAct或PoT相当,同时显著提升了性能。然而,不同的提示构建可能会影响结果。未来研究应探索不依赖手工制作的提示的更高效工具使用方式,因为手工提示通常涉及重新编码的长上下文窗口。

测试任务有限

虽然作者已在多个重要任务和不同大语言模型Agent应用上验证了CRITIC的效果,但其在其他任务和模型上的效果尚不明确,因为大语言模型Agent应用可能并不总需要或能够有效利用外部反馈。此外,实验仅限于文本模态,显式语言评估不一定适用于所有模型输出。面对这些挑战,未来工作可以将CRITIC应用于更广泛的场景,例如结合字典支持翻译或多语言任务,利用WolframAlpha验证数学解决方案和证明,通过模拟环境为模型决策提供反馈,以及扩展到更多模态。

测试案例分享

作者在全文的附录部分提供了一些CRITIC成功和失败的案例:

成功案例

开放式问答任务中,CRITIC矫正虚假回答

图片

图片

开放式问答任务中,CRITIC纠正错误的推理链

图片

图片

开放式问答任务中,CRITIC发现过时的大语言模型中的过时信息

图片

图片

失败案例

开放式问答任务中,证据不足

图片

图片

开放式问答任务中,推理错误

图片

图片

Prompt

最重要的环节就是如何实现了,作者在文章中也列出了所用到的prompt,这里我们列少数几个,其他的大家自己点开原文看附录部分就可以了。

图片

图片

图片

图片

图片

图片

Arxiv[1]

通往 AGI 的神秘代码

if like_this_article():
    do_action('点赞')    
    do_action('再看')    
    add_wx_friend('iamxxn886')

if like_all_arxiv_articles():
    go_to_link('https://github.com/HuggingAGI/HuggingArxiv')    star_github_repo(''https://github.com/HuggingAGI/HuggingArxiv')

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
  • 15
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值