大模型技术| BERT的花式玩法

BERT在工业界落地已经很普遍了,主要在搜索、推荐和NLP中广泛应用,我将自己运用BERT的心得总结如下:

  • BERT在工业界的落地:新数据预训练、多任务、蒸馏/裁剪、双塔的在线应用;
  • 如何蒸馏模型
  • 在BERT基础上有哪些有效的改进点
  • 如何融入知识图谱
  • 相关性的框架:考虑到业务效果,必要的前置/后置规则可能有效;两阶段分别解决不相关、以及区分强相关/一般相关;
  • 多业务场景

下面就带大家一起看看阿里、美团和百度等公司是如何将BERT应用在业务中并提升业务指标的。

图片

业界实践

一、百度-ERNIE(艾尼)

论文:ERNIE 2.0: A Continual Pre-Training Framework for Language Understanding

github:http://github.com/PaddlePaddle/ERNIE

改进点:引入知识,在BERT基础上MASK 词和实体的方法,学习这个词或者实体在句子里面 Global 的信号。

图片

BERT 提出后,我们发现一个问题,它学习的还是基础语言单元的 Language Model,并没有充分利用先验语言知识,这个问题在中文很明显,它的策略是 MASK 字,没有 MASK 知识或者是短语。在用 Transformer 预测每个字的时候,很容易根据词包含字的搭配信息预测出来。比如预测“雪”字,实际上不需要用 Global 的信息去预测,可以通过“冰”字预测。基于这个假设,我们做了一个简单的改进,把它做成一个 MASK 词和实体的方法,学习这个词或者实体在句子里面 Global 的信号。

图片

基于上述思想我们发布了基于知识增强的语义表示ERNIE(1.0)

图片

英文上验证了推广性,实验表明 ERNIE(1.0)在 GLUE 和 SQuAd1.1 上提升也是非常明显的。为了验证假设,我们做了一些定性的分析,找了完形填空的数据集,并通过 ERNIE 和 BERT 去预测,效果如上图。

图片

我们对比了 ERNIE、BERT、CoVe、GPT、ELMo 模型,结果如上图所示。ELMo 是早期做上下文相关表示模型的工作,但它没有用 Transformer,用的是 LSTM,通过单向语言模型学习。百度的 ERNIE 与 BERT、GPT 一样,都是做网络上的 Transformer,但是 ERNIE 在建模 Task 的时候做了一些改进,取得了很不错的效果。

图片

在应用上,ERNIE 在百度发布的面向工业应用的中文 NLP 开源工具集进行了验证,包括 ERNIE 与 BERT 在词法分析、情感分类这些百度内部的任务上做了对比分析。同时也有一些产品已经落地,在广告相关性的计算、推荐广告的触发、新闻推荐上都有实际应用。

后来,百度艾尼 ( ERNIE ) 再升级,发布了持续学习语义理解框架 ERNIE 2.0,同时借助飞桨 ( PaddlePaddle ) 多机多卡高效训练优势发布了基于此框架的 ERNIE 2.0 预训练模型。该模型在共计 16 个中英文任务上超越了 BERT 和 XLNet,取得了 SOTA 效果。

二、阿里大文娱—Poly Encoders

论文:Poly-encoders: Transformer Architectures and Pre-training Strategies for Fast and Accurate Multi-sentence Scoring

相关性逻辑架构:

前置的tuner层 :主要包含一些黄金的规则,在训练集上准确率超过95%的这种规则策略,当满足这些条件时,不进行模型处理,直接通过规则处理。

模型层: 当黄金规则处理不了时,利用分档的模型做兜底。分档的模型含有两个子模型为Recall模型和Refine模型,两个模型的结构一样,但它们使用的特征以及样本的选择是不一样的。分档模型的好处在于将整个相关性分档的功能进行了解耦,一个是用来发现高相关性的优质DOC,另外一个是用来降低相关性的岔道和进行过滤。

后置的tuner层: 该层对于因为样本数据不均衡、核心特征缺少等原因没有学出来的情况,会添加一些人工的兜底规则进行补充。比如说会针对视频内容理解特征做了一些规则。该层中还全局调档的一个Tuner,它的作用是基于全局的DOC匹配再做一些调整。

图片

BERT在工业界落地的常用三步

图片

非对称双塔模型(在线部署)

如果直接从交互性(12层BERT)改成双塔(2个12层BERT),指标下降较多

非对称双塔:

  • Doc(离线):为了降低双塔模型的指标衰减,对于Doc侧,它其实保存的并不是一个Embedding,它是M组的Embedding,M组可以理解为从M个侧面刻画Doc的特征,这样也是为了最大限度的去保留Doc侧的一些丰富的信息;

  • Query(在线):三层BERT,但是也会导致指标衰减;

图片

多阶段蒸馏模型

图片

融合知识的深度语义匹配

  • 对于query,通过对KG进行一个查询找到它的子图,然后把它子图的结构化信息编码成BERT通用的序列化的输入,然后再在KG层和文本层之间做一些attention的监督操作

图片

三、知乎—搜索文本相关性与知识蒸馏

交互式BERT: 用于精排

表示型BERT: 用在召回、粗排,采用了 BERT 输出 token 序列向量的 average 作为句向量的表示

图片

召回: 语义召回模型整体是 BERT 相关性任务中双塔表示模型的一个应用。BERT 做为 encoder 来对 query 和 doc 进行向量的表示,基于 faiss 对全量 doc 向量构建语义索引,线上实时的用 query 向量进行召回。

图片

下面详细介绍下知乎的语义召回模型。首先看个例子,对于「玛莎拉蒂 ghlib」这个 case,用户真正想搜的是「玛莎拉蒂 Ghibli」这款车,但用户一般很难记住完整的名称,可能会输错。在输错的情况下,基于传统的 term 匹配方式(Google 搜索的例子)只能召回“玛莎拉蒂”相关的 doc,而无法进行这辆车型的召回,这种场景下就需要进行语义召回。更通用的来说,语义召回可以理解为增加了字面不匹配但是语义相关的 doc 的召回。

知识蒸馏

图片

图片

对于BERT 的蒸馏我们做了大量的调研,并对目前主流的蒸馏方案做了归纳分类。基于任务维度来说,主要对应于现在的 pretrain + fine-tune 的两段式训练。在预训练阶段和下游任务阶段都有不少的方案涉及。技巧层面来分的话,主要包括不同的迁移知识和模型结构的设计两方面。后面我会选两个典型的模型简单介绍一下。

蒸馏的收益主要分为在线和离线两部分。

图片

在线方面:

交互模型的层数从 12 层压缩到 6 层,排序相关性特征 P95 减少为原本的 1/2,整体搜索入口下降 40ms,模型部署所需的 GPU 机器数也减少了一半,降低了资源消耗。

表示模型语义索引存储规模 title 减为 1/4,content 维度从 768 维压缩至 64 维,虽然维度减少了 12 倍,但增加了倒排索引 doc 的数量,所以 content 最终减为 1/6,语义索引召回也有比较大的提升,title 减少为 1/3,content 减少为 1/2。精排模块需要线上实时查询离线计算好的向量,所以查询服务也有提升。

离线方面:

表示模型语义索引的构建时间减少为 1/4,底层知乎自研的 TableStore/TIDB 存储减为原来的 1/6,LTR 训练数据和训练时间都有很大的提升,粗排早期用的是 BM25 等基础特征,后来引入了 32 维的 BERT 向量,提升了精排精度。

四、美团—BERT搜索核心排序

用于核心搜索的“核心排序”中,蒸馏成2层交互BERT,预测的query-poi相关性分数作为排序的一个特征使用。

训练数据:

  • 使用下单数据作为正样本,使用未点击过的数据构造负样
  • Skip-Above采样:受限于App搜索场景的展示屏效,无法保证召回的POI一次性得到曝光。若直接将未被点击的POI作为负例,可能会将未曝光但相关的POI错误地采样为负例。为了保证训练数据的准确性,我们采用Skip-Above方法,剔除这些噪音负例,即从用户点击过的POI之上没有被点击过的POI中采样负例(假设用户是从上往下浏览的POI)。

引入品类信息:

  • 对于模型输入部分,我们将Query、Doc标题、三级类目信息拼接,并用[SEP]分割,区分3种不同来源信息。对于段向量,原始的BERT只有两种片段编码EA和EB,在引入类目信息的文本信息后,引入额外的片段编码Ec。引入额外片段编码的作用是防止额外信息对Query和Doc标题产生交叉干扰。由于我们改变了BERT的输入和输出结构,无法直接基于MT-BERT进行相关性Fine-tuning任务。我们对MT-BERT的预训练方式做了相应改进,BERT预训练的目标之一是NSP(Next Sentence Prediction),在搜索场景中没有上下句的概念,在给定用户的搜索关键词和商户文本信息后,判断用户是否点击来取代NSP任务。

引入实体任务识别,多任务fine-tuning

图片

Pairwise Fine-tuning

  • 样本:单条样本为三元组<Query, Doc+, Doc->;
  • loss:除了输入样本上的变化,为了考虑搜索场景下不同样本之间的偏序关系,我们参考RankNet[34]的方式对训练损失函数做了优化。

图片

Partition-model,多业务问题

  • Partition-model的思想是利用所有数据进行全场景联合训练,同时一定程度上保留每个场景特性,从而解决多业务场景的排序问题。

图片

损失函数: 选用优化NDCG的Lambda Loss

模型轻量化

  • 裁剪、蒸馏、低精度量化

五、阿里闲鱼—搜索相关性

特征构造

搜索相关性的特征这里分为三个维度:基础特征、文本匹配特征以及语义匹配特征。基础特征主要包括 query 和 item 的统计特征,以及结构化相关的匹配特征,如类目是否匹配、关键属性(品类、品牌、型号等)是否匹配。文本匹配特征主要是字面上的匹配特征,如 term 匹配数、匹配率、带同义词策略的匹配、带 term weight 的匹配以及最基础的 BM25 分等。语义匹配特征则主要包括基于点击行为的表示匹配、文本和多模态语义匹配。

图片

搜索相关性的特征

其中基础特征和文本匹配特征相对常规,不再详细展开。下面重点对语义匹配特征做进一步的介绍:

文本语义匹配

处于性能考虑,文本的语义匹配采用双塔向量匹配模型结构:基础模型使用开源的 BERT,Query 和 Item 共享相同的参数权重。同时为了适应下游的相关性分档,模型采用 Pointwise 的训练方式。篇幅原因,这里对模型细节不作展开。而相比模型结构的设计,其实闲鱼搜索中更重要的工作在于训练样本的构造。由于现阶段缺少人工标注数据的积累,所以当前该部分工作主要解决以下两个问题:

•高置信样本挖掘,缓解搜索点击日志“点击但不相关”的问题。

•定制化的负样本构造,避免模型收敛过快,只能判断简单语义相关性,而对上文提到的闲鱼场景"勉强相关"的难 case 无法区分。

针对以上问题,参考集团相关经验并结合对闲鱼搜索数据的观察分析,做了如下采样方案:

正样本:

•充足曝光下高点击 ctr 样本(ctr 大于同 query 下商品点击率平均值)

负样本:

•同父类目的邻居叶子类目负采样。

•高曝光低点击类目样本:同一个 query 搜索下,根据点击过商品的类目分布,取相对超低频类目样本

作为负样本(如类目分布占比 < 0.05 的商品视为负样本)。

•充足曝光情况下,低于相应 query 平均曝光点击率 10%以下的样本做负样本。

•基于 query 核心 term 替换构造负样本:如对于“品牌 A+品类”结构的 Query,使用“品牌 B+品类”结构的 query 做其负样本。

•随机构造负样本:为增加随机性,该部分实现在训练时使用同 batch 中其他样本做负样本,同时引入 batch hard sample 机制。

上述方式采样得到的训练数据,随机抽测准确率在 90%+,进一步采样后量级在 4kw+。在此基础上训练双塔模型,上线方式为离线抽取 Embedding,线上查表并计算向量相似度。

图片

文本语义模型

该部分工作独立全量上线,抽测 top300 query + 随机 200query 搜索满意度+6.6%;同样文本语义向量用于 i2i 向量召回,复用到闲鱼求购场景,核心指标点击互动人次相对提升 20.45%。

定义搜索 query top10 商品完全相关/基本相关占比>80%为满意,一组 query 评测结果为满意的占比为 query 满意度。

多模态语义匹配

除了文本语义向量匹配,本次工作也尝试了多模态语义向量。模型侧使用预训练的多模态 BERT,类似工作集团已经有大量的尝试,本文主要参考过([1],[2]),并对模型和策略作了一些调整:

• 替换多图特征抽取为首图 region 特征抽取做图像特征序列(resnet pooling 前的特征序列),提升链路效率;

• 替换 Bert-base 为 Electra-small,减小模型参数(经测试 47M 的模型,下游分类任务精度损失 2 个点以内),方便与 Resnet 联合 E2E 训练。

下游的匹配任务仍使用双塔模型策略,和文本语义模型不同的是,这里直接使用 Triple Loss 的方式,主要考虑加大模型之间的差异性,使后面的模型融合有更大的空间。

图片

多模态语义模型

PS: 该部分工作离线 AUC 为 0.75 相对较高,在下游特征融合 AUC 提升 1 个点以上。但在上线过程中,由于需要图像处理,增量商品特征更新回流相对其他链路延迟较大,容易造成新商品特征缺失,因此还需要进一步链路优化。

点击图表示匹配

除了上文提到的通过语义向量引入语义信息,还可以借助搜索日志中的点击行为表示 query 或 item 构造图结构引入新的语义表示。其中基于图结构的 match 算法 SWING 算法,在阿里内部应用广泛,相关的文章也有很多,这里不在阐述。针对闲鱼场景首先将<user, item>点击 pair 对改造为<item, query>点击 pair 对,这样直接沿用现有的 swing 工具,可以得到 query2query 的列表。聚合 key query 的所有相似 query,并进行分词,对所有的 term 进行加权求和,归一化后得到 key query 的表示。

其中的权重为 swing 算法输出的 score,key query 的 term 权重默认为 1。而对于行为稀疏的长尾 query 则使用上文语义向量召回最相近的头部 query,补充其语义表示。最终得到的 query 表示实例:

图片

得到 query 表示后,item 同样做类似的归一化表示。上线时使用稀疏存储的方式,在线计算匹配 term 的加权和作为点击图表示匹配分。

特征融合

准备好必要的相关性特征后,下一步则是对众多特征的有效融合,本文则采用经典的 GBDT 模型完成该步骤。选择 GBDT 模型的好处一方面在于检索引擎(Ha3)精排算分插件中有现成的组件可以直接复用,另一方面也在于相比于更加简单的 LR 模型可以省去很多特征预处理步骤,使得线上策略更加简单。

模型的训练使用人工标注的训练数据,标注目标为四档(完全相关、基本相关、勉强相关以及完全不相关)。在训练阶段,四个档位被映射到 1、0.75、0.25 和 0 四个分位,GBDT 模型则通过回归的方式对分位进行拟合。由于该部分策略是对子特征的 ensemble,因此并不需要非常多的训练数据(这里的量级在万级别)。

图片

特征融合模型

最终,经过常规的调参,GBDT 特征融合模型离线 AUC 可以达到 0.86,基本符合预期(最优单特征 AUC 为 0.76)。该策略全量上线,在文本语义向量的基础之上,不影响成交效率的前提下:随机 query 抽测(top 800w)DCG@10 相对提升 6.51%,query 搜索满意度+24%;头部 query 同样也有相应的提升,相应地搜索体感也得到有效提升。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
  • 11
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值