随着春节期间DeepSeek的爆火,AI大模型再一次引起大家的关注。除了DeepSeek外,还有很多其他的大模型,如OpenAI、Gemini、Kimi、豆包等,它们能写文章、画图、写代码,甚至能帮你策划旅行。那这些眼花缭乱的大模型有哪些分类呢?我们根据行业和应用范围大致可以分为四类:
- 通用大模型
- 行业大模型
- 专业大模型
- 私有大模型
1. 通用大模型
1.1. 通用介绍
- 模型说明: 它的底座技术就是生成式的AI,更具体一点,就是大语言模型(LLM)。
- 训练的数据: 基于全网公开数据(书籍、网页、论文等)训练。学习了全人类公开的知识。
- 以人做类比: 像一位知识渊博的“通才老师”,但遇到专业问题可能需要“补课”。
- 应用场景: 日常聊天、学习辅助、创意生成。
1.2. 典型代表
名称 | 所属公司 | 特点 |
---|---|---|
ChatGPT | OpenAI(OpenAI后面被微软全资收购了) | |
DeepSeek | 深度求索 | |
Gemini | ||
文心一言(后改名文小言 ) | 百度 | |
混元 | 腾讯 | |
通义千问 | 阿里 | |
豆包 | 字节跳动 |
2. 行业大模型
2.1. 通用介绍
- 模型说明: 它是垂直领域的模型,专注于某一特定的行业,如法律、金融、医疗、教育等。
- 训练的数据: 某个特定行业的数据,如医疗、金融、法律等。学习了够特特定行业的知识。
- 以人做类比: 像是某一行业的“专业顾问”,它知道这一行业的所有行业知识。
- 应用场景: 医生问诊辅助、金融风险预测、法律文件处理。
2.2. 典型代表
名称 | 所属公司 | 特点 |
---|---|---|
BloombergGPT | Bloomberg | 金融大语言模型,能够分析市场趋势、生成财经报告等。 |
Med-PaLM | 医疗大型语言模型, 能解读X光片,辅助医生诊断疾病等。 | |
Lexion | Lexion,后被DocuSign收购 | 医疗大型语言模型, 能完成合同审查、法律条款分析等。 |
3. 专业大模型
3.1. 通用介绍
- 模型说明: 它是一个比行业模型还更垂直的模型,专注于某一特定的细分领域,如蛋白质结构预测、图像生成等。
- 训练的数据: 某个特定领域的数据,如基因工程等。学习了某个特定领域的专业知识。
- 以人做类比: 像奥运会跳水冠军,只在特定项目上碾压全场,但不会打篮球。
- 应用场景: 科研实验、艺术创作、软件开发等。
3.2. 典型代表
名称 | 所属公司 | 特点 |
---|---|---|
AlphaFold | Google DeepMind | 预测蛋白质三维结构,推动生物医药研究。 |
Copilot | GitHub 和 OpenAI 共同开发 | 人工智能代码助手,能够帮助开发者自动生成代码、修复错误、编写文档等。 |
4. 私有大模型
4.1. 通用介绍
- 模型说明: 它是一个比行业模型还更垂直的模型,专注于某一特定的细分领域,如蛋白质结构预测、图像生成等。
- 训练的数据: 某个特定企业、组织或个人的数据。学习了企业、组织或个人的内部私密知识。
- 以人做类比: 相当于一个企业或个人的私人秘书。它可以代替你形式一部分能力,甚至有些能力会超越你。
- 应用场景: 企业内部数据分析、客户服务定制、敏感信息处理。
说明:私有大模型,也有叫智能体(AI Ageent
)或数字分身。
4.2. 典型代表
- 微信公众的AI智能回复,开启“AI智能回复”后,AI会学习公众号历史发表内容并提供智能回复。
- 特斯拉自动驾驶模型:基于车辆真实行驶数据优化。
- 腾讯混元大模型(内部版):优化社交平台内容审核。
5. 总结
5.1. 差异对比
类型 | 优势 | 劣势 | 用户群体 |
---|---|---|---|
通用大模型 | 功能全面,上手简单 | 专业性不足 | 普通用户、开发者 |
行业大模型 | 领域知识丰富 | 跨行业能力弱 | 医生、金融从业者 |
专业大模型 | 单任务精度极高 | 功能单一 | 科学家、艺术家 |
私有大模型 | 数据安全,高度定制 | 开发成本高 | 大型企业、政府机构 |
5.2. 区别说明
- 这些不同类型的大模型之间最关键的区别是训练数据的不同。因为大模型算法的原理是类似的,都具备理解、搜索、推理的能力。
- 行业大模型和专业大模型的边界是比较模糊的,比如
Copilot
你可以说它是一个(编程)行业大模型,也可以说它是一个专业大模型。不是严格区分的情况下,也可以把他们似为同一类。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
全套AGI大模型学习大纲+路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。