Ollama(本地部署大模型) + LobeChat(聊天界面) = 自己的ChatGPT

本篇文章将介绍如何部署一个本地大模型和部署一个前端界面程序实现一个自己的ChatGPT。

本地部署大模型

在本地部署大模型有多种方式,其中Ollama方式是最简单的,但是其也有一定的局限性,比如大模型没有其支持的GGUF二进制格式,就无法使用Ollama方式部署。

GGUF旨在实现快速加载和保存大语言模型,并易于阅读

Ollama 是一个用于部署和运行各种开源大模型的工具。用户通过执行几条命令就能在本地运行开源大模型,极大简化了大模型在本地运行,类似于Docker。

第一步:安装Ollama 【官方网站

支持的操作系统: MacOS/Linux/Windows/Docker

1. 安装(MacOS为例)

使用最简单的方式:使用brew install ollama安装。

第二种方式:下载安装包,下载对应操作系统的安装包直接安装即可,操作非常简单

2. 验证(是否安装成功)

Termial上输入ollama -v 命令,如果出现如下图,则说明安装成功 image.png

第二步:在Ollama上安装大模型

1、从 Ollama 获取要安装的模型。

已安装 llava 模型为例,先进入ollama.com/library 网站,然后输入llava进行搜索,复制安装命令。 image.png

说明:Ollama的运行会受到所使用模型大小的影响。留意个人电脑配置选择合适的模型

  • 运行一个7B(70亿参数)的模型至少需要8GB的可用内存(RAM),而运行13B(130亿参数)的模型需要16GB内存,33B(330亿参数)的模型需要32GB的内存
  • 需要考虑提供足够的磁盘空间,大模型的文件大小可能比较大,建议至少为Ollama和其模型预留50GB磁盘空间。
  • 性能较高的CPU可以提供更好的运算速度和效率,多核处理器能够更好的处理并行任务,选择具有足够的核数的CPU
  • GPU,Ollama支持纯CPU运行,但可以利用GPU进行加速,提高模型的运行速度和性能。

2、打开Terminal 执行安装命令

打开 Terminal 执行 ollama run llava:7b 命令 image.png 至此成功在本地安装一个llava参数为7B的大模型,我们可以使用Spring AI 对接本地的大模型,再也不用担心Open AI Key的问题了。

其它本地大模型部署框架

您也可以选择其它的本地部署大模型的框架,将简单的介绍下GPT4ALL和OpenLLM:

GPT4ALL

Github 链接/官方网站 gpt4all是一个免费使用、本地运行、具有隐私意识的聊天机器人,无需 GPU 或互联网。 可以在任意地方运行大模型的框架

A free-to-use, locally running, privacy-aware chatbot. No GPU or internet required. run open-source LLMs anywhere

OpenLLM

GitHub链接

OpenLLM 是一个用于在生产环境中操作大型语言模型(LLM)的开放平台。它使开发人员能够轻松地运行任何开源LLM的推理,部署到云端或本地,并构建强大的AI应用程序。

部署LobeChat界面 【官方网站

LobeChat是现代化设计的开源 ChatGPT/LLMs 聊天应用与开发框架,支持语音合成、多模态、可扩展的插件系统。一键免费拥有你自己的 ChatGPT/Gemini/Claude/Ollama 应用。

LobeChat 支持多种平台的部署,我们选择最常用的Docker方式部署 image.png

第一步:Docker部署 (本地已部署跳过该步)

Docker在不同平台上简单的安装命令,根据自己操作系统进行选择;

  • MacOS: brew install docker
  • CentOS: yum install docker
  • Ubuntu: apt install docker.io

第二步:Docker上部署LobeChat

打开 Terminal 终端执行如下Docker命令,仅限使用本地Ollama;

docker run -d -p 3210:3210 --name lobe-chat lobehub/lobe-chat

如果连接到远程大模型或者使用代理连接远程大模型,可以参考官方提供的Docker启动命令 lobehub.com/zh/docs/sel…. 我们进入 Docker Dashboard 看到如下图所示,证明LobeChat程序启动成功。 image.png

第三步:查看界面效果

输入 localhost:3210 界面如下; image.png

第四步:配置LobeChat

当我们进去界面后,点击大脑图标,需要配置LobeChat使用的大模型。 image.png 然后点击前往设置进入进行设置界面,如下图所示; image.png

  1. LobeChat支持很多大模型,我们选择Ollama
  2. 点击获取模型列表,获取安装在Ollama上的模型,我已经安装了四个了
  3. 模型列表选择上需要的模型,然后返回聊天界面,然后在点击大脑图标就有刚才配置的模型,选择需要使用的大模型。

image.png

至此已成功安装了LobeChat界面程序,然后测试聊天,如下所示; image.png 至此我们成功部署了属于自己的ChatGPT。

其它 UI 框架

除 LobeChat UI 框架外,还有一些比较优秀的框架,具体如下

Open WebUI

Github 链接

Open WebUI 是一个可扩展、功能丰富且用户友好的开源自托管 AI 界面,旨在完全离线运行。它支持各种 LLM 运行器,包括 Ollama 和 OpenAI 兼容的 API。

Enchanted

Github 链接

Enchanted 是一款专门为 MacOS/iOS/iPadOS 平台开发的应用程序,支持 Llama、Mistral、Vicuna、Starling 等多种私人托管模型。该应用致力于在苹果的全生态系统中为用户提供一个未经过滤、安全、保护隐私以及多模态的人工智能体验。

Chatbox

Github 链接

Chatbox 是一个老牌的跨平台开源客户端应用,基于 Tauri 开发,简洁易用。除了 Ollama 以外他还能够通过 API 提供另外几种流行大模型的支持。

NextJS Ollama LLM UI

Github 链接

NextJS Ollama LLM UI 是一款专为 Ollama 设计的极简主义用户界面。虽然关于本地部署的文档较为有限,但总体上安装过程并不复杂。该界面设计简洁美观,非常适合追求简约风格的用户。

总结

本篇文章介绍了本地大模型的部署和 LobeChat 界面的部署,成功在本地部署属于自己的ChatGPT。上面也只是关键步骤的说明,遇到问题多看下官方的安装文档。本文起到抛砖引玉作用。

如何零基础入门 / 学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

read-normal-img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

### 部署 ChatGPT 模型或服务于 Ollama 平台 #### 准备工作 为了在本地环境中部署类似于 ChatGPT 的应用,需先完成环境准备。这涉及到两个主要组件:一是能够处理自然语言理解与生成的大规模预训练模型;二是提供友好交互体验的前端界面。 对于大规模预训练模型的选择上,可以考虑使用 Ollama 提供的服务来加载适合的任务需求的语言模型[^1]。而针对前端部分,则有多种选项可供挑选,例如 LobeChat 或者 chat-ollama 这样的开源项目能很好地满足这一目的[^2]。 #### 安装 Ollama 和启动服务 按照官方指南下载并安装 Ollama 软件包之后,通过执行 `ollama serve` 命令即可轻松开启后台服务进程。此操作会使得服务器处于待命状态,准备好接收来自客户端的应用请求。 #### 构建可视化聊天界面 选择合适的前端框架至关重要。这里推荐采用 Docker 方式来进行 chat-ollama部署,它不仅简化了依赖关系管理还提高了系统的移植性和稳定性。具体来说就是利用给定的 GitHub 仓库资源,依照指示文件中的说明进行设置,并最终以容器化形式运行整个应用程序栈。 初次启动时还需额外注意数据库初始化环节,即在另一个终端窗口里输入如下指令完成必要的表结构创建: ```bash docker-compose exec chatollama npx prisma migrate dev ``` #### 获取并配置所需模型 访问 http://localhost:3000 即可进入已搭建好的 web 应用首页,在那里可以根据提示进一步调整参数设定以及上传特定领域内的语料数据集用于微调现有基础版本之外的新颖对话能力。特别指出的是,考虑到中文场景下的表现优化问题,建议优先选用经过针对性改进过的 llm 模型实例比如 llama2-chinese 来增强交流效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值