【进阶六】Python实现SDVRPTW常见求解算法——自适应大邻域算法(ALNS)

基于python语言,采用经典自适应大邻域算法(ALNS)对 带硬时间窗的需求拆分车辆路径规划问题(SDVRPTW) 进行求解。

往期优质资源


经过一年多的创作,目前已经成熟的代码列举如下,如有需求可私信联系,表明需要的 **问题与算法**,原创不宜,有偿获取。
VRP问题GAACOALNSDEDPSOQDPSOTSSA
CVRP
VRPTW
MDVRP
MDHVRP
MDHVRPTW
SDVRP
SDVRPTW

1. 适用场景

  • 求解SDVRPTW
  • 车辆类型单一
  • 车辆容量小于部分需求节点需求
  • 单一车辆基地
  • 带硬时间窗

2. 代码调整


2.1 需求拆分


SDVRP问题相比,SDVRPTW问题不仅允许客户需求大于车辆载重,而且考虑了客户节点的时间窗约束。为了使得每个客户的需求得到满足,必须派遣一辆或多辆车辆在规定时间窗内对客户进行服务。对于需求节点的拆分,这里依然采取先验拆分策略,本文采用文献[1]提出的先验分割策略,表述如下:

(1)20/10/5/1拆分规则

  • m20 =max{ m ∈ Z + ∪ { 0 } ∣ 0.20 Q m < = D i m\in Z^+ \cup \{0\} | 0.20Qm <= D_i mZ+{0}∣0.20Qm<=Di }
  • m10 =max{ m ∈ Z + ∪ { 0 } ∣ 0.10 Q m < = D i − 0.20 Q m 20   m\in Z^+ \cup \{0\} | 0.10Qm <= D_i-0.20Qm_{20}~ mZ+{0}∣0.10Qm<=Di0.20Qm20  }
  • m5 =max{ m ∈ Z + ∪ { 0 } ∣ 0.05 Q m < = D i − 0.20 Q m 20 − 0.10 Q m 10 m\in Z^+ \cup \{0\} | 0.05Qm <= D_i-0.20Qm_{20}-0.10Qm_{10} mZ+{0}∣0.05Qm<=Di0.20Qm200.10Qm10 }
  • m1 =max{ m ∈ Z + ∪ { 0 } ∣ 0.01 Q m < = D i − 0.20 Q m 20 − 0.10 Q m 10 − 0.05 Q m 5 m\in Z^+ \cup \{0\} | 0.01Qm <= D_i-0.20Qm_{20}-0.10Qm_{10}-0.05Qm_{5} mZ+{0}∣0.01Qm<=Di0.20Qm200.10Qm100.05Qm5 }

(2)25/10/5/1拆分规则

  • m25 =max{ m ∈ Z + ∪ { 0 } ∣ 0.25 Q m < = D i m\in Z^+ \cup \{0\} | 0.25Qm <= D_i mZ+{0}∣0.25Qm<=Di }
  • m10 =max{ m ∈ Z + ∪ { 0 } ∣ 0.10 Q m < = D i − 0.25 Q m 25   m\in Z^+ \cup \{0\} | 0.10Qm <= D_i-0.25Qm_{25}~ mZ+{0}∣0.10Qm<=Di0.25Qm25  }
  • m5 =max{ m ∈ Z + ∪ { 0 } ∣ 0.05 Q m < = D i − 0.25 Q m 25 − 0.10 Q m 10 m\in Z^+ \cup \{0\} | 0.05Qm <= D_i-0.25Qm_{25}-0.10Qm_{10} mZ+{0}∣0.05Qm<=Di0.25Qm250.10Qm10 }
  • m1 =max{ m ∈ Z + ∪ { 0 } ∣ 0.01 Q m < = D i − 0.25 Q m 25 − 0.10 Q m 10 − 0.05 Q m 5 m\in Z^+ \cup \{0\} | 0.01Qm <= D_i-0.25Qm_{25}-0.10Qm_{10}-0.05Qm_{5} mZ+{0}∣0.01Qm<=Di0.25Qm250.10Qm100.05Qm5 }

在实现过程中,对于需求超过车辆容量的客户必须进行需求拆分,而对于未超过车辆容量的客户可以拆分也可以不拆分,这里设置了参数比例进行限制。

2.2 需求拆分后的服务时长取值问题


节点的服务时长会影响车辆的行进时间,进而会影响与节点时间窗的匹配问题。一般来说,节点的服务时长与需求量成正比关系,在进行节点需求拆分后,新节点的需求量降低,其服务时长理应也降低。但从标准数据集来看,各需求节点的服务时长均采用同一数值。因此本文在代码实现过程中也采用固定值,不考虑新节点服务时长的变化。当然,如有需要,也可以设置单位货物的服务时长,根据拆分后节点的具体需求量设置相应的服务时长。


3. 求解结果


(1)收敛曲线
在这里插入图片描述

(2)车辆路径
在这里插入图片描述

(3)输出内容

在这里插入图片描述


4. 代码片段


(1)数据结构

import math
import random
import numpy as np
import copy
import xlsxwriter
import matplotlib.pyplot as plt
import csv
import time
# 数据结构:解
class Sol():
    def __init__(self):
        self.obj=None # 目标函数值
        self.node_no_seq=[] # 解的编码
        self.route_list=[] # 解的解码
        self.timetable_list=[] # 车辆访问各点的时间
        self.route_distance_list = None
# 数据结构:需求节点
class Node():
    def __init__(self):
        self.id=0 # 节点id
        self.x_coord=0 # 节点平面横坐标
        self.y_coord=0  # 节点平面纵坐标
        self.demand=0 # 节点需求
        self.start_time=0 # 节点开始服务时间
        self.end_time=1440 # 节点结束服务时间
        self.service_time=0 # 单次服务时长
        self.vehicle_speed = 0 # 行驶速度
# 数据结构:车场节点
class Depot():
    def __init__(self):
        self.id=0 # 节点id
        self.x_coord=0 # 节点平面横坐标
        self.y_coord=0  # 节点平面纵坐标
        self.start_time=0 # 节点开始服务时间
        self.end_time=1440 # 节点结束服务时间
        self.v_speed = 0 # 行驶速度
        self.v_cap = 80 # 车辆容量
# 数据结构:全局参数
class Model():
    def __init__(self):
        self.best_sol=None # 全局最优解
        self.sol_list=[] # 解的集合
        self.demand_dict = {}  # 需求节点集合
        self.depot = None  # 车场节点集合
        self.demand_id_list = [] # 需求节点id集合
        self.distance_matrix = {}  # 距离矩阵
        self.time_matrix = {}  # 时间矩阵
        self.number_of_demands = 0 # 需求点数量
        self.demand_id_list_ = []  # 经先验需求分割后的节点集合
        self.demand_dict_ = {}  # 需求分割后的节点需求集合
        self.distance_matrix_ = {}  # 原始节点id间的距离矩阵
        self.time_matrix_ = {}  # 原始节点id间的时间矩阵
        self.mapping = {}  # 需求分割前后的节点对应关系
        self.split_rate = 0.5 # 控制需求分割的比例(需求超出车辆容量的除外)

        self.rand_d_max = 0.4  # 随机破坏最大破坏比例
        self.rand_d_min = 0.1  # 随机破坏最小破坏比例
        self.worst_d_min = 5  # 最坏值破坏最少破坏数量
        self.worst_d_max = 20  # 最坏值破坏最多破坏数量
        self.regret_n = 5  # 后悔值破坏数量
        self.r1 = 30  # 一等得分值
        self.r2 = 18  # 二等得分值
        self.r3 = 12  # 三等得分值
        self.rho = 0.6  # 权重衰减比例
        self.d_weight = np.ones(2) * 10  # 破坏算子权重
        self.d_select = np.zeros(2)  # 破坏算子选择次数
        self.d_score = np.zeros(2)  # 破坏算子得分
        self.d_history_select = np.zeros(2)  # 破坏算子累计选择次数
        self.d_history_score = np.zeros(2)  # 破坏算子累计得分
        self.r_weight = np.ones(3) * 10  # 修复算子权重
        self.r_select = np.zeros(3)  # 修复算子选择次数
        self.r_score = np.zeros(3)  # 修复算子得分
        self.r_history_select = np.zeros(3)  # 修复算子累计选择次数
        self.r_history_score = np.zeros(3)  # 修复算子累计得分

(2)距离矩阵

# 读取csv文件
def readCSVFile(demand_file,depot_file,model):
    with open(demand_file,'r') as f:
        demand_reader=csv.DictReader(f)
        for row in demand_reader:
            node = Node()
            node.id = int(row['id'])
            node.x_coord = float(row['x_coord'])
            node.y_coord = float(row['y_coord'])
            node.demand = float(row['demand'])
            node.start_time=float(row['start_time'])
            node.end_time=float(row['end_time'])
            node.service_time=float(row['service_time'])
            model.demand_dict[node.id] = node
            model.demand_id_list.append(node.id)
        model.number_of_demands=len(model.demand_id_list)

    with open(depot_file, 'r') as f:
        depot_reader = csv.DictReader(f)
        for row in depot_reader:
            depot = Depot()
            depot.id = row['id']
            depot.x_coord = float(row['x_coord'])
            depot.y_coord = float(row['y_coord'])
            depot.start_time=float(row['start_time'])
            depot.end_time=float(row['end_time'])
            depot.v_speed = float(row['v_speed'])
            depot.v_cap = float(row['v_cap'])
            model.depot = depot
# 初始化参数:计算距离矩阵时间矩阵
def calDistanceTimeMatrix(model):
    for i in range(len(model.demand_id_list)):
        from_node_id = model.demand_id_list[i]
        for j in range(len(model.demand_id_list)):
            to_node_id = model.demand_id_list[j]
            dist = math.sqrt((model.demand_dict[from_node_id].x_coord - model.demand_dict[to_node_id].x_coord) ** 2
                             + (model.demand_dict[from_node_id].y_coord - model.demand_dict[to_node_id].y_coord) ** 2)
            model.distance_matrix[from_node_id, to_node_id] = dist
            model.time_matrix[from_node_id,to_node_id] = math.ceil(dist/model.depot.v_speed)
        dist = math.sqrt((model.demand_dict[from_node_id].x_coord - model.depot.x_coord) ** 2 +
                         (model.demand_dict[from_node_id].y_coord - model.depot.y_coord) ** 2)
        model.distance_matrix[from_node_id, model.depot.id] = dist
        model.distance_matrix[model.depot.id, from_node_id] = dist
        model.time_matrix[from_node_id,model.depot.id] = math.ceil(dist/model.depot.v_speed)
        model.time_matrix[model.depot.id,from_node_id] = math.ceil(dist/model.depot.v_speed)

(3)邻域搜索

# 随机破坏
def createRandomDestory(model):
    d=random.uniform(model.rand_d_min,model.rand_d_max)
    return random.sample(model.demand_id_list_,int(d*(len(model.demand_id_list_)-1)))

# 随机修复
def createRandomRepair(remove_list,model,sol):
    unassigned_node_no_seq = remove_list
    assigned_node_no_seq = [node_no for node_no in sol.node_no_seq if node_no not in remove_list]
    # insert
    for node_no in unassigned_node_no_seq:
        index=random.randint(0,len(assigned_node_no_seq)-1)
        assigned_node_no_seq.insert(index,node_no)
    new_sol=Sol()
    new_sol.node_no_seq=copy.deepcopy(assigned_node_no_seq)
    new_sol.timetable_list, new_sol.obj, new_sol.route_distance,new_sol.route_list=calObj(assigned_node_no_seq,model)
    return new_sol

参考

【1】 A novel approach to solve the split delivery vehicle routing problem

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Better.C

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值