神经网络训练过程概述

神经网络的训练包括前向传播和反向传播。前向传播计算并存储各层结果,反向传播则计算梯度以更新参数,这一过程由优化算法如SGD或Adam指导。反向传播因需保存中间结果而增加内存消耗。梯度下降法用于更新权重,学习率的选择对训练效果至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、神经网络训练过程

  • 前向传播,计算损失
  • 反向传播,更新参数
  • 循环往复,损失最小

模型训练的过程,就是通过SGD、Adam等优化算法指导模型进行参数更新的过程

二、前向传播

  前向传播(forward propagation)的过程就是按照从输入到输出的顺序,计算存储神经网络中每一层的结果,即中间变量。

在这里插入图片描述

网络结构与前向计算图

三、反向传播

  反向传播(Backward Propagation)的过程就是按照从输出到输入的顺序,依次计算和存储神经网络的中间变量和参数的梯度,原理是链式法则。

  反向传播过程中会重复利用前向传播中存储的中间值,以避免重复计算。因此,需要保留前向传播过程中的中间结果,这会导致模型训练比模型预测需要更多的内存(显存)

四、梯度下降

  沿梯度下降的方向更新权重和偏置的值,沿梯度方向会增加损失函数的值,学习率为 η η η

在这里插入图片描述

  学习率不能太大也不能太小,否则会出现下图所示情况:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晓shuo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值