SPP的作用

文章介绍了SPP(SpatialPyramidPooling)层如何解决卷积神经网络(CNN)训练时输入图像尺寸需一致的问题。SPP通过使用不同尺度的池化层,允许输入图像尺寸不固定,将特征融合成固定长度的向量输入到全连接层,从而增强了模型的灵活性。
摘要由CSDN通过智能技术生成

  解决了训练CNN需要输入图像尺寸一致的问题。

  一个CNN可看作由卷积、池化、全连接层组成,由于全连接层的权重矩阵是一个固定值,因此输入全连接层的特征图的维度也必须固定。

  SPP利用多尺度思想解决了上述问题,使得神经网络的训练过程由图1变为图2,即输入图像的尺寸可以不一样,不再受到限制。

在这里插入图片描述

图1 原有神经网络训练过程

在这里插入图片描述

图2 带SPP的神经网络训练过程

  SPP的思想就是利用多个不同尺度的池化层进行特征的提取,融合成一个21维的向量输入至全连接层。

在这里插入图片描述

图3 SPP网络结构
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晓shuo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值