使用PyTorch进行情侣幸福度测试!情侣慎用!切记!

本文介绍了使用PyTorch构建的DeepConnection模型,该模型通过深度学习技术分析图像,准确率达到97%来区分幸福与不幸福的情侣。通过数据增强、ResNet基础网络、空间金字塔池化层(SPP)和均值变换(PMT)提高模型性能。此外,通过Grad-CAM进行模型解释,揭示关注面部表情的重要性。未来计划使用更大规模数据集训练更复杂的模型,并探讨其在情侣治疗中的应用潜力。
摘要由CSDN通过智能技术生成

 

 

 

 

 

DeepConnection模型框架

计算机视觉--图像和视频数据分析是深度学习目前最火的应用领域之一。因此,在学习深度学习的同时尝试运用某些计算机视觉技术做些有趣的事情会很有意思,也会让你发现些令人吃惊的事实。长话短说,我的搭档(Maximiliane Uhlich)和我决定将深度学习应用于浪漫情侣的形象分类上,因为Maximiliane是一位关系研究员和情感治疗师。具体来说,我们想知道我们是否可以准确地判断图像或视频中描绘的情侣是否对他们的关系感到满意?事实证明,我们可以!我们的最终模型(我们称之为DeepConnection)分类准确率接近97%,能够准确地区分幸福与不幸福的情侣。大家可以在我们的论文预览链接 [1] 里阅读完整介绍,上图是我们为这个任务设计的框架草图。

 

 

 

 

 

 

在数据集收集方面,我们使用这个Python脚本 [2] 进行网页数据抽取(webscraping)来获取幸福和不幸福的情侣数据。最后,我们整理出了大约包含1000张图像的训练集。这并不是特别多,所以我们使用数据增强与迁移学习来增强我们模型在数据集上的表现。数据增强--图像方向的微小变化,色调和色彩强度以及许多其他因素都会增强模型的泛化能力,从而避免学习一些不相关信息。例如,如果数据中幸福夫妻的图像平均比不幸福夫妻的图像更亮,我们并不希望我们的模型映射这种关联。我们使用了强大的ImgAug库 [3] 进行了相当多策略的数据扩充,以确保我们模型的鲁棒性。基本上对于每个批次的每个图像,我们都至少应用多种数据增强技术。下图是一张图片应用了48种数据增强策略的示例。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值