大多数人工智能领域的工具都会使用到Python,这个需要提前安装,同时推荐使用虚拟环境进行环境的隔离,比如用Anaconda(conda create -n xxx
)或者使用Python自带的模块创建虚拟环境(python -m venv xxx
)。同时在使用前请记得激活环境。
训练
我们使用llama-3-chinese-8b-instruct-v3,好处是它已经通过中文语料进行了训练,将https://huggingface.co/hfl/llama-3-chinese-8b-instruct-v3/tree/main链接下的文件下载到本地目录。
注:如果在Huggingface上直接申请Llama模型的访问权限,国家最好不要选择中国,Alan的测试是选择中国遭拒,而选择美国则通过申请。
想过执行代码来自Chinese-LLaMA-Alpaca-3项目,执行代码这里使用了Git Bash,这样在Windows下可以获取和Linux相似的使用体验。
训练的代码位于scripts/training目录下,如果使用的是Mac或Linux,可以直接修改run_sft.sh
中相关目录直接运行Shell脚本。以下演示为通过Python代码运行:
`python run_clm_sft_with_peft.py --model_name_or_path /d/workspace/llama-3-chinese-8b-instruct-v3 --tokenizer_name_or_path /d/workspace/llama-3-chinese-8b-instruct-v3 --dataset_dir /d/workspace/Chinese-LLaMA-Alpaca-3/data --per_device_train_batch_size 1 --per_device_eval_batch_size 1 --do_train 1 --do_eval 1 --seed 42 --bf16 1 --num_train_epochs 3 --lr_scheduler_type cosine --learning_rate 1e-4 --warmup_ratio 0.05 --weight_decay 0.1 --logging_strategy steps --logging_steps 10 --save_strategy steps --save_total_limit 3 --evaluation_strategy steps --eval_steps 100 --save_steps 200 --gradient_accumulation_steps 8 --preprocessing_num_workers 8 --max_seq_length 1024 --output_dir /d/workspace/output --overwrite_output_dir 1 --ddp_timeout 30000 --logging_first_step True --lora_rank 64 --lora_alpha 128 --trainable "q_proj,v_proj,k_proj,o_proj,gate_proj,down_proj,up_proj" --lora_dropou 0.05 --modules_to_save "embed_tokens,lm_head" --torch_dtype bfloat16 --validation_file /d/workspace/Chinese-LLaMA-Alpaca-3/data/ruozhiba_qa2449_gpt4t.json --load_in_kbits 16 --low_cpu_mem_usage True`
以上数据集和验证集在做私有数据训练时需做相应修改,这里使用原仓库中的数据进行了演示,训练时间取决于硬件设备,我这里跑了一整夜:
llama 3 Chinese微调
合并
训练完成后如需具备通用模型的能力还应与原模型进行合并操作,这一代码在Alpaca的scripts目录下,命令如下:
`python merge_llama3_with_chinese_lora_low_mem.py --base_model /d/workspace/llama-3-chinese-8b-instruct-v3 --lora_model /d/workspace/output --output_dir /d/workspace/output_merge`
得到的文件如下:
微调合并操作
量化
可以看到上图中的文件占用约15 GB,文件也较多,不利于部署,通常都会先进行量化处理,这里选择的项目为:https://github.com/ggerganov/llama.cpp
git clone https://github.com/ggerganov/llama.cpp.git cd llama.cpp/ pip install -r requirements/requirements-convert_hf_to_gguf.txt
Linux和Mac下直接执行make
,Windows如无cmake,下载cmake,然后执行:
cmake -B build cmake --build build --config Release python convert_hf_to_gguf.py ../output_merge --outtype f16 --outfile ../output_models/llama3_chinese-8B-F16.gguf ./llama-quantize ../output_models/llama3_chinese-8B-F16.gguf ../output_models/llama3_chinese-8B-q4_0.gguf q4_0
量化后的llama3_chinese-8B-q4_0.gguf文件仅为4.5 GB。量化的算法较多,
WSL在make时会出现报错:
scripts/build-info.sh: 31: Syntax error: end of file unexpected (expecting "then")
,需执行:sudo apt install dos2unix find -type f -print0 | xargs -0 dos2unix
出现
CMake Error at CMakeLists.txt:2 (project): Running 'nmake' '-?' failed with: 系统找不到指定的文件。
尝试删除build目录再执行cmake
,如仍有问题可能和cmake与Visual Studio的安装有关,Alan直接使用Visual Studio所安装的cmake执行并没有发生异常(我安装在D盘,所以添加的环境变量为:D:\Program Files\Microsoft Visual Studio\2022\Community\Common7\IDE\CommonExtensions\Microsoft\CMake\CMake\bin)。编译后的命令位于build/bin/Release目录中。
部署
依然使用Alpaca项目,我们将使用Ollama进行部署,所以进入scripts/ollama目录,将Modelfile文件中FROM后的文件修改为刚刚所保存的llama3_chinese-8B-q4_0.gguf文件路径,然后创建模型,名称可自己选择:
ollama create llama3-chinese-8b-q4 -f Modelfile
执行以下命令运行该模型:
ollama run llama3-chinese-8b-q4
此时就会发现模型不仅具备底座模型的能力,还可以回答我们微调数据集中的相关问题。
程序员为什么要学大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓