有手就行的大模型教程:如何在个人电脑上部署盘古大模型

前言

在当前的人工智能浪潮中,大型预训练模型如盘古等,因其卓越的性能和广泛的应用前景而备受关注。然而,这些模型的部署并非易事,尤其是在个人电脑上。由于其庞大的参数量和计算需求,通常需要高性能的硬件支持。尽管如此,对于热衷于AI研究与实践的个人用户而言,了解如何在个人设备上部署这类大模型具有重要的学习价值。本文旨在探讨这一过程,为读者提供一个从理论到实践的指南,帮助大家理解大模型部署的基本原理,以及如何克服资源限制,实现个人电脑上的初步应用尝试。

注意:本教材基于github的https://github.com/ecmwf-lab/ai-models 以及个人安装实践撰写,不保证适用范围

如遇到其他机器安装bug,一概不能解决

安装步骤

需要材料:一部安装了anaconda的有独显的笔记本电脑,一个会打字的猴子 前置条件

  • • 阅读anaconda安装帖子https://blog.csdn.net/weixin_73800108/article/details/137296446
  • • Python 3.10(它可能适用于不同的版本,但已在 Linux/MacOS 上使用 3.10 进行了测试)。
  • • 用于访问输入数据的 ECMWF 和/或 CDS 帐户(有关详细信息,请参见下文)。
  • • 使用 GPU 计算以获得最佳性能(强烈建议)。

好下面我们正式开始

打开anaconda prompt 键入以下命令

代码语言:javascript

conda create -n ai-models python=3.10  
conda activate ai-models  
conda install cudatoolkit  
pip install ai-models  

碰到询问你yes or no就输y

第二步,安装盘古挂件

代码语言:javascript

pip install ai-models-panguweather  

第三步。下载预训练资料

ai-models --download-assets --assets assets-panguweather panguweather

这一步博主遇到了错误如下

代码语言:javascript

File "D:\anaconda\envs\ai-models\lib\site-packages\onnxruntime\capi\_pybind_state.py", line 32, in <module>  
  from .onnxruntime_pybind11_state import *  # noqa  
ImportError: DLL load failed while importing onnxruntime_pybind11_state: 动态链接库(DLL)初始化例程失败。  

将报错喂给神奇海螺,神奇海螺建议我再装一次onnxruntime库

于是你需要键入以下

conda install -c conda-forge onnxruntime

然后再次下载预训练数据,文件较大需要耐心等待下载

ai-models --download-assets --assets assets-panguweather panguweather

下载完成后,会出现下图

Image Name

再一行就会叫你输入api链接和api

这里需要一个ec账号下载ec的气压数据,博主马上注册了一个账户,结果发现全部都白瞎

报错如下:

ecmwfapi.api.APIException: "ecmwf.API error 1: User 'decadeneo@outlook.com' has no access to services/mars"

api填进去后显示我权限不足,有权限的同学可以直接键入或者跳过

没ec账号的同学直接可以跳过这步

那么博主以前用来下载era5数据的cds账号就派上用场了 键入如下代码进行推理

代码语言:javascript

ai-models --input cds --date 20220920 --time 0000 --assets assets-panguweather panguweather  

会出现如下提示

Image Name

输入了对应的api信息后就开始数据下载之旅

下载完毕后则直接进入推理阶段

Image Name

推理完十天的预报,花了39分58秒

奇怪了,官网上说一分钟就完事了,难道4060不行?

运行完的文件就在当前文件夹下

Image Name

官网参数说明,以下是各项功能的说明:

帮助与信息选项
  • --help: 显示帮助信息,介绍所有可用的命令行选项。
  • --models: 列出所有已安装的模型。
  • --debug: 开启调试模式,会在控制台上打印额外的信息,有助于问题排查。
输入源选项
  • --input INPUT: 指定模型的输入来源,可以是mars(欧洲中期天气预报中心的数据库)、cds(气候数据存储库)或file(本地文件)。
  • --file FILE: 设置具体的输入文件路径。选择此选项将使--input参数默认为file
  • --date DATE: 设置模型分析的日期,默认情况下为昨天。
  • --time TIME: 设置模型分析的时间,默认值为1200(即中午12点)。
输出目标选项
  • --output OUTPUT: 定义模型输出的目的地,可以选择filenone
  • --path PATH: 设置用于写入模型输出的文件路径。
运行参数
  • --lead-time HOURS: 设置预测的小时数,缺省值为240小时(10天)。
预训练数据管理
  • --assets ASSETS: 指定包含模型数据的目录路径,默认为当前目录,也可以通过设置环境变量$AI_MODELS_ASSETS来覆盖。
  • --assets-sub-directory: 启用将数据组织在<assets-directory>/<model-name>子目录中的功能。
  • --download-assets: 如果数据不存在,则下载它们。
其他选项
  • --fields: 打印模型作为初始条件所需的字段列表。
  • --expver EXPVER: 设置模型输出的实验版本。
  • --class CLASS: 设置模型输出的class元数据。
  • --metadata KEY=VALUE: 在模型输出中添加额外的元数据。

这些选项允许用户精细地控制模型的运行环境,输入输出,以及执行过程中的各种参数,非常适合需要高度定制化操作的场景。

小结

通过本文的介绍,我们了解到在个人电脑上部署盘古大模型并非不可行,但确实需要克服一系列挑战,包括但不限于计算资源的限制、各种bug的应付。虽然直接运行完整版的大模型可能超出大多数个人电脑的能力范围,但通过合理的技术选择和配置调整,例如使用轻量化版本的模型或在云服务上进行部分处理,个人用户仍然可以体验到大模型的部分功能,并在此基础上进行创新性的探索。这不仅丰富了个人的学习经历,也为未来AI技术的普及和个性化应用开辟了新的可能性。

程序员为什么要学大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值