本文深入探讨了大型机器学习模型(大模型)的基本概念、发展历程、特点、分类、工作原理、定制与优化方法,以及其在不同领域的应用和部署策略。
大模型概述
在当今人工智能领域,大模型(Large Models)已经成为了一个热门话题。它们不仅在自然语言处理、计算机视觉、推荐系统等多个领域展现出了卓越的性能,而且还不断地推动着人工智能技术的发展。下面,我们将从大模型的基本概念、发展历程以及特点与分类三个方面,对大模型进行全面概述。
大模型的基本概念
大模型,也称为大型机器学习模型,是指具有大规模参数和复杂计算结构的机器学习模型。这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。大模型在各种领域都有广泛的应用,包括自然语言处理、计算机视觉、语音识别等。
大模型通过训练海量数据来学习复杂的模式和特征,具有更强的泛化能力,可以对未见过的数据做出准确的预测。ChatGPT对大模型的解释更为通俗易懂,也更体现出类似人类的归纳和思考能力:大模型本质上是一个使用海量数据训练而成的深度神经网络模型,其巨大的数据和参数规模,实现了智能的涌现,展现出类似人类的智能。
那么,大模型和小模型有什么区别?小模型通常指参数较少、层数较浅的模型,它们具有轻量级、高效率、易于部署等优点,适用于数据量较小、计算资源有限的场景,例如移动端应用、嵌入式设备、物联网等。而当模型的训练数据和参数不断扩大,直到达到一定的临界规模后,其表现出了之前未能预测的、更复杂的、能够综合分析和解决更深层次问题的复杂能力和特性,这种能力被称为“涌现”。而具备涌现能力的机器学习模型就被认为是独立意义上的大模型,这也是其和小模型最大意义上的区别。相比小模型,大模型通常参数较多、层数较深,具有更强的表达能力和更高的准确度,但也需要更多的计算资源和时间来训练和推理,适用于数据量较大、计算资源充足的场景,例如云端计算、人工智能等。
大模型的发展历程
大模型的发展历程可以分为三个阶段:
-
萌芽期(1950-2005):以CNN为代表的传统神经网络模型阶段。从计算机专家约翰·麦卡锡提出“人工智能”概念开始,AI发展由最开始基于小规模专家知识逐步发展为基于机器学习。1980年,CNN的雏形诞生。1998年,现代卷积神经网络的的基本结构LeNet-5诞生,机器学习方法由早期基于浅层机器学习的模型,变为了基于深度学习的模型,为自然语言生成、计算机视觉等领域的深入研究奠定了基础,对后续深度学习框架的迭代及大模型发展具有开创性的意义。
-
探索沉淀期(2006-2019):以Transformer为代表的全新神经网络模型阶段。2013年,自然语言处理模型Word2Vec诞生,首次提出将单词转换为向量的“词嵌入”,以便计算机更好地理解和处理文本数据。2014年,被誉为21世纪最强大算法模型之一的GAN(对抗式生成网络)诞生,标志着深度学习进入了生成模型研究的新阶段。2017年,Google颠覆性地提出了基于自注意力机制的神经网络结构——Transformer架构,奠定了大模型预训练算法架构的基础。2018年,OpenAI和Google分别发布了GPT-1与BERT大模型,意味着预训练大模型成为自然语言处理领域的主流。
-
迅猛发展期(2020-至今):以GPT为代表的预训练大模型阶段。2020年,OpenAI公司推出了GPT-3,模型参数规模达到了1750亿,成为当时最大的语言模型,并且在零样本学习任务上实现了巨大性能提升。随后,更多策略如基于人类反馈的强化学习(RLHF)、代码预训练等开始出现,被用于进一步提高推理能力和任务泛化。2022年11月,搭载了GPT3.5的ChatGPT横空出世,凭借逼真的自然语言交互与多场景内容生成能力,迅速引爆互联网。2023年3月,最新发布的超大规模预训练大模型——GPT-4,具备了多模态理解与多类型内容生成能力。在迅猛发展期,大数据、大算力和大算法完美结合,大幅提升了大模型的预训练和生成能力以及多模态多场景应用能力。如ChatGPT的巨大成功,就是在微软Azure强大的算力以及wiki等海量数据支持下,在Transformer架构基础上,坚持GPT模型及人类反馈的强化学习(RLHF)进行精调的策略下取得的。
大模型的特点与分类
大模型的特点主要包括:
- 巨大的规模:大模型包含数十亿个参数,模型大小可以达到数百GB甚至更大。巨大的模型规模使大模型具有强大的表达能力和学习能力。
- 涌现能力:涌现能力指的是当模型的训练数据突破一定规模,模型突然涌现出之前小模型所没有的、意料之外的、能够综合分析和解决更深层次问题的复杂能力和特性,展现出类似人类的思维和智能。
- 更好的性能和泛化能力:大模型通常具有更强的学习能力和泛化能力,能够在各种任务上表现出色,包括自然语言处理、图像识别、语音识别等。
- 多任务学习:大模型通常会一起学习多种不同的NLP任务,如机器翻译、文本摘要、问答系统等。这可以使模型学习到更广泛和泛化的语言理解能力。
- 大数据训练:大模型需要海量的数据来训练,通常在TB以上甚至PB级别的数据集。只有大量的数据才能发挥大模型的参数规模优势。
- 强大的计算资源:训练大模型通常需要数百甚至上千个GPU,以及大量的时间,通常在几周到几个月。
- 迁移学习和预训练:大模型可以通过在大规模数据上进行预训练,然后在特定任务上进行微调,从而提高模型在新任务上的性能。
- 自监督学习:大模型可以通过自监督学习在大规模未标记数据上进行训练,从而减少对标记数据的依赖,提高模型的效能。
- 跨领域学习:大模型可以从多个领域的数据中学习知识,并在不同领域中应用,促进跨领域的创新。
- 自动化和效率:大模型可以自动化许多复杂的任务,提高工作效率,如自动编程、自动翻译、自动摘要等。
大模型的分类主要按照输入数据类型和应用领域进行划分:
-
按照输入数据类型:
- 语言大模型(NLP):用于处理文本数据和理解自然语言,例如GPT系列、Bard、文心一言等。
- 视觉大模型(CV):用于图像处理和分析,例如VIT系列、华为盘古CV、INTENET等。
- 多模态大模型:能够处理多种不同类型数据,例如文本、图像、音频等,例如DingDongDB多模态向量数据库、DALL-E、悟空画画、midjourney等。
-
按照应用领域: