Ollama+Open WebUI:搭建本地私有化的 AI 应用平台

基于 Ollama + Open WebUI,我们可以搭建部署本地私有化的 AI 应用平台。通过 Ollama 实现本地化大语言模型的运行管理,结合 Open WebUI 的交互界面、RAG 增强能力和多模型支持特性,形成集模型推理、应用开发、隐私保护于一体的私有化 AI 平台,适用于企业知识库、安全对话系统、离线智能助手等场景。

  • Ollama 是一个开源的本地大语言模型运行框架,旨在让用户能够在本地计算机上轻松运行、管理和与大型语言模型(LLM)进行交互。Ollama 的设计目标是简化大型语言模型的本地部署和管理,适合开发者、研究人员以及对数据隐私有较高要求的用户
  • Open WebUI 是一个可扩展、功能丰富且用户友好的自托管 AI 平台,支持完全离线运行。它支持多种语言模型运行器,如 Ollama 和兼容 OpenAI 的 API,并内置了用于检索增强生成(RAG)的推理引擎,使其成为强大的 AI 部署解决方案。

Ollama 的功能特性与安装步骤,可阅读 《大模型本地部署开源框架 Ollama 介绍》。本文在已部署安装 Ollama 的基础上,介绍 Open WebUI 的功能特性、安装步骤,初步搭建私有化的 AI 应用平台。 Open WebUI 的文档地址:https://docs.openwebui.com/,github 项目为 https://github.com/open-webui/open-webui,目前已有 78.7 K stars,很火的 AI 应用项目。

Open WebUI 功能特性

Open WebUI 的功能丰富,涵盖大模型集成、用户权限控制、聊天对话、工具函数调用、RAG、网络搜索、图像生成、自定义管道(pipeline)等功能,十分强大!

  • 轻松安装:使用 Docker 或 Kubernetes(kubectl、kustomize 或 helm)无缝安装,支持 :ollama 和 :cuda 标签的镜像,体验无烦恼的安装过程。
  • Ollama/OpenAI API 集成:轻松集成兼容 OpenAI 的 API,可实现多样化的对话,同时支持 Ollama 模型。可自定义 OpenAI API URL,连接 LMStudio、GroqCloud、Mistral、OpenRouter 等。
  • 细粒度权限和用户组:通过允许管理员创建详细的用户角色和权限,确保了一个安全的用户环境。这种细粒度的权限设置不仅增强了安全性,还允许定制用户界面,培养用户的归属感和责任感。
  • 响应式设计:在台式电脑、笔记本电脑和移动设备上享受无缝体验。
  • 移动设备的渐进式 Web 应用 (PWA):通过我们的 PWA,在移动设备上享受类似原生应用的体验,提供离线访问 localhost 和流畅的用户界面。
  • 全面支持 Markdown 和 LaTeX:通过全面的 Markdown 和 LaTeX 功能提升 LLM 体验,实现更丰富的交互。
  • 免提语音/视频通话:体验集成的免提语音和视频通话功能,允许更动态和互动的聊天环境。
  • 模型构建器:通过 Web UI 轻松创建 Ollama 模型。创建和添加自定义角色/代理,定制聊天元素,并通过 Open WebUI 社区集成轻松导入模型。
  • 原生 Python 函数调用工具:通过工具工作区中的内置代码编辑器支持增强您的 LLM。通过简单地添加 Python 函数,实现自定义函数(BYOF)与 LLM 的无缝集成。
  • 本地 RAG 集成:通过开创性的检索增强生成 (RAG) 支持,探索与 AI 聊天互动的前沿体验。此功能将文档交互无缝集成到聊天体验中。可以直接将文档加载到聊天中,或将文件添加到文档库中,使用 # 命令轻松访问它们。
  • RAG 的网络搜索:使用 SearXNG、Google PSE、Brave Search、serpstack、serper、Serply、DuckDuckGo、TavilySearch、SearchApi 和 Bing 等提供商进行网络搜索,并将结果直接注入到对话聊天体验中。
  • 网络浏览功能:使用 # 命令后跟 URL,将网站无缝集成到您的聊天体验中。此功能允许您将网络内容直接融入对话中,增强对话互动的丰富性和深度。
  • 图像生成集成:使用 AUTOMATIC1111 API 或 ComfyUI(本地)以及 OpenAI 的 DALL-E(外部)选项,无缝融入图像生成功能,为聊天体验增添动态视觉内容。
  • ⚙️ 多模型对话:轻松地同时与各种模型互动,利用它们的独特优势获得最佳回应。通过并行利用多样化的模型集来提升体验。
  • 基于角色的访问控制 (RBAC):通过限制权限确保安全访问;只有授权人员可以访问您的 Ollama,模型创建/拉取权限仅限管理员。
  • 多语言支持:通过国际化 (i18n) 支持,支持以偏好的语言体验 Open WebUI。
  • 管道,Open WebUI 插件支持:使用管道插件框架(https://github.com/open-webui/pipelines)将自定义逻辑和 Python 库无缝集成到 Open WebUI 中。启动您的管道实例,将 OpenAI URL 设置为管道 URL,并探索无限可能。示例包括函数调用、用户速率限制以控制访问、使用 Langfuse 等工具进行使用监控、使用 LibreTranslate 进行实时翻译以支持多语言、过滤有害信息等。
  • 持续更新:致力于通过定期更新、修复和新功能来持续改进 Open WebUI。

安装步骤

Open WebUI 的安装步骤十分简单,支持 python pip 和 docker 两种安装方式。

通过 python pip 安装

  1. 1. 确保安装的 python 是 3.11 版本以上(3.11 以上版本的 python,可避免兼容性问题)

  1. 2. 运行 pip install open-webui 命令,进行安装。
pip install open-webui
  1. 3. 安装完成后,运行命令 open-webui serve,启动 Open WebUI 服务。
open-webui serve

通过 Docker 安装

  1. 1. 下载 docker 镜像。
    运行以下 docker 命令,下载 docker 镜像。
docker pull ghcr.io/open-webui/open-webui:main
  1. 2. 启动 Open WebUI 服务。
    若 Ollama 模型服务运行在同一台机器上,可运行以下 docker 命令,启动 Open WebUI 服务。
docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

若 Ollama 模型服务运行在不同的机器上,可通过 OLLAMA_BASE_URL 指定 Ollama 服务地址。

docker run -d -p 3000:8080 -e OLLAMA_BASE_URL=https://example.com -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main

功能体验

Open WebUI 服务启动后,通过 http://localhost:8080 链接,即可访问 Open WebUI 服务。

以可视化的方式向模型(deepseek-r1:7b)进行提问:为什么三体不是稳态的?模型的回答以流式响应的形式返回。

切换至 qwen2.5-coder:7b,分析代码。

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值