从零开始构建大模型:LLMs-from-scratch(附PDF)

《Build a Large Language Model (From Scratch)》是机器学习和 AI 研究员、畅销书《 Python 机器学习》的作者Sebastian Raschka 所著的一本新书,旨在为读者揭示从零开始构建大型语言模型(LLM)的全过程。《Build a Large Language Model (From Scratch)》是一本理论与实践相结合的教程,能够帮助读者深刻理解LLM的工作原理,并学会如何构建和优化属于自己的模型,对于希望在AI领域深入发展的学习者来说,是一本不可或缺的参考书籍。

内容简介

这本书通过清晰的文字、图表和实例,详细解释了构建大型语言模型的每一个阶段,从最初的设计和创建,到使用通用语料库进行预训练,直至针对特定任务进行微调。书中具体讲解了如何规划和编码LLM的所有部分、准备适合LLM训练的数据集、使用自己的数据微调LLM、应用指令调整方法来确保LLM遵循指令以及将预训练权重加载到LLM中。

主要亮点

  • 从头开始的构建过程:展示了如何从零开始构建一个工作中的LLM,带领读者深入了解LLM的内部工作原理。
  • 开源代码库:作者在GitHub上开源了书中涉及的所有代码,方便读者获取并实践书中的内容。代码库链接:https://github.com/rasbt/LLMs-from-scratch?tab=readme-ov-file,目前已有 42.6 k stars。
  • 实用的指令微调方法:重点介绍了指令微调的方法,包括如何将数据格式化为指令-响应对、如何应用prompt-style模板以及如何使用掩码等,这些技巧能够有效提升模型的性能。

适合读者

本书适合具有Python基础知识的读者阅读,拥有一定机器学习模型开发经验者更佳。无论是学生、研究员还是业界从业人员,都可以通过本书学习到构建和应用LLM的实用技巧。

目录

  1. 理解大型语言模型
  2. 处理文本数据
  3. 编码注意力机制
  4. 从零开始实现一个GPT模型以生成文本
  5. 在无标签数据上进行预训练
  6. 为分类任务进行微调
  7. 为遵循指令进行微调

 如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,也可以作为小白实战演练和初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研和多多调试实践。 从零开始构建大模型(将整个模型构建管道精心分解为关键组件,如Qwen, Agent, Diffusion, Evaluation, LLM, RAG和Transformer Models。通过详细的技术解释和完整的代码实现).zip 从零开始构建大模型(将整个模型构建管道精心分解为关键组件,如Qwen, Agent, Diffusion, Evaluation, LLM, RAG和Transformer Models。通过详细的技术解释和完整的代码实现).zip 从零开始构建大模型(将整个模型构建管道精心分解为关键组件,如Qwen, Agent, Diffusion, Evaluation, LLM, RAG和Transformer Models。通过详细的技术解释和完整的代码实现).zip 从零开始构建大模型(将整个模型构建管道精心分解为关键组件,如Qwen, Agent, Diffusion, Evaluation, LLM, RAG和Transformer Models。通过详细的技术解释和完整的代码实现).zip 从零开始构建大模型(将整个模型构建管道精心分解为关键组件,如Qwen, Agent, Diffusion, Evaluation, LLM, RAG和Transformer Models。通过详细的技术解释和完整的代码实现).zip 从零开始构建大模型(将整个模型构建管道精心分解为关键组件,如Qwen, Agent, Diffusion, Evaluation, LLM, RAG和Transformer Models。通过详细的技术解释和完整的代码实现).zip
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值