打造自己的大模型-02篇|LoRA微调大模型的评测和导出

在之前的的文章《打造自己的大模型|01篇LLaMA-Factory微调Llama3和其占用资源分析》,我们通过训练了9.5小时,完成了Llama3-8B-Instruct的LoRA 微调训练

本篇文章,我们将继续利用LLaMA-Factory,进行大模型的评测和导出。

训练文件保存的文件夹

保存在默认的文件夹位置,主要文件有:adapter_model.safetensors,保存着LoRA微调Adapter层的权重参数。

在这里插入图片描述

加载Adapter参数并对话

选择适配器路径,点击Chat,加载LoRA的Adapter层参数:

在这里插入图片描述

在这里插入图片描述

对话结果,现在回答默认都是中文了。但是存在一些数据污染,将自己识别成Google创造出来的了:

在这里插入图片描述

在这里插入图片描述

评测微调的大模型

一般微调之后的大模型,我们都需要评估他的性能,和是否满足我们测试数据集和业务的目标。

利用LLaMA-Factory可视化页面上的,Evaluate&Predict页面,选择的测试数据集是另一个中文语料,alpaca_gpt4_zh

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

占用的显存大小和运行时间:

设置了Batch-Size=2的原因,占用的显存空间会比较大。

在这里插入图片描述

总体的运行时间是2小时。

在这里插入图片描述

评测的结果保存:

在这里插入图片描述

在这里插入图片描述

合并导出微调的大模型

将我们的基座大模型Llama3-8B-Instruct和微调的Adapter层参数合并,并导出:

在这里插入图片描述

如果采用cuda导出模型,则需要大量的显存,24GB显存的A100单卡上运行,会出现OOM,内存溢出的问题。

所以我们需要选择CPU导出。

导出的结果和文件夹内容,和基座大模型的文件一致:

在这里插入图片描述

直接对话合并导出的大模型

在这里插入图片描述

在这里插入图片描述

对话结果,效果与加载Adapter参数的相似:

在这里插入图片描述

在这里插入图片描述

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享**(安全链接,放心点击)**👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享**(安全链接,放心点击)**👈

<think>好的,我现在要帮用户解答如何对DeepSeek医疗大模型进行微调的完整流程。首先,我需要回顾用户提供的引用内容,确保回答符合他们的资源。用户提到了三个引用,其中引用[1]提到DeepSeek基于Llama结构,哪些层参与LoRA微调;引用[2][3]则涉及微调实战指南,特别是环境准备流程步骤。 用户的问题是关于医疗大模型微调,所以需要将通用的微调流程与医疗领域结合。首先,我应该分步骤讲解流程,从环境准备到数据预处理、模型选择、参数配置、训练监控、评估部署等。同时,需要结合LoRA微调,因为引用[1]提到LoRA层,可能需要解释在DeepSeek模型中具体应用的部分,比如注意力层。 要注意用户可能关心医疗数据的特点,比如数据隐私、标注质量、领域术语等。在数据准备阶段,需要强调数据清洗合规性。另外,参数设置部分,学习率、批次大小等可能需要针对医疗文本调整,比如较小的学习率避免过拟合。 可能的问题点:用户是否有足够的医疗数据集?是否需要领域适应的技巧?比如,使用预训练的医疗词向量或者领域特定的分词器。引用[3]提到需要安装特定的库,如peft、transformers,这些在环境准备时必须包括。 还需要考虑微调后的评估指标,比如在医疗任务上的准确率、召回率,或者特定的医学评测数据集。部署时,可能需要提到如何整合到医疗系统或API服务。 最后,生成的相关问题需要围绕医疗微调的挑战、数据增强、模型压缩等,确保覆盖用户可能感兴趣的扩展话题。</think>以下是对DeepSeek医疗大模型进行微调的完整流程指南,结合Llama架构特点与LoRA微调技术[^1][^3]: ### 一、环境准备 1. **硬件要求** - GPU显存建议≥24GB(如A10/A100) - 内存≥32GB - 存储空间≥100GB(医疗文本数据量较大) 2. **软件依赖** 安装核心库(引用[3]中的环境配置): ```bash pip install peft transformers datasets torch accelerate bitsandbytes ``` ### 二、数据准备 1. **医疗数据集构建** - 来源:电子病历、医学文献、临床指南、药品说明书 - 格式要求: ```python { "instruction": "解释糖尿病发病机制", "input": "", "output": "糖尿病主要由胰岛素分泌不足或作用障碍引起..." } ``` 2. **数据预处理** - 去标识化处理(HIPAA合规) - 医学术语标准化(使用UMLS等医学本体) - 文本分段:将长文本按<2048 tokens切分 ### 三、模型配置 1. **LoRA层选择** 基于Llama架构特点(引用[1]),建议对以下层进行适配: ```python target_modules = [ "q_proj", "k_proj", "v_proj", # 注意力层的查询/键/值投影 "gate_proj", "up_proj", "down_proj" # FFN层 ] ``` 2. **参数配置示例** ```python from peft import LoraConfig lora_config = LoraConfig( r=8, # 秩 lora_alpha=32, target_modules=target_modules, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ) ``` ### 四、训练流程 1. **加载预训练模型** ```python from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained( "deepseek-llm/medical-base", load_in_4bit=True, # 4bit量化节省显存 device_map="auto" ) ``` 2. **训练参数设置** ```python training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=4, gradient_accumulation_steps=8, learning_rate=3e-5, num_train_epochs=3, fp16=True, logging_steps=50, optim="paged_adamw_32bit" ) ``` ### 五、监控与评估 1. **训练监控指标** - 损失曲线 - 显存利用率(确保<90%) - 医疗QA准确率(需准备验证集) 2. **医学专项评估** ```python from evaluate import load medqa_metric = load("medqa") results = medqa_metric.compute( predictions=preds, references=labels ) ``` ### 六、部署应用 1. **模型导出** ```python model.save_pretrained("./fine_tuned_model") tokenizer.save_pretrained("./fine_tuned_model") ``` 2. **推理优化** - 使用vLLM加速推理 - 部署医疗问答API: ```python from fastapi import FastAPI app = FastAPI() @app.post("/diagnose") async def diagnose(text: str): return {"response": pipeline(text)} ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值