基于Lstm+transformer的刀具磨损预测实战

本文通过视频教程,展示了如何利用Lstm和Transformer深度学习模型进行刀具磨损的预测实战。详细介绍了从数据展示到主要代码的实现过程,并提供了完整的代码数据下载链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 使用LSTMTransformer进行强度预测的Python实现 #### 1. 导入必要的库 为了构建LSTMTransformer模型,需要导入一些常用的深度学习库。这包括`tensorflow`及其子模块`keras`,以及数据处理工具如`numpy`和`pandas`。 ```python import numpy as np import pandas as pd from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import LSTM, Dense, Input, TimeDistributed, MultiHeadAttention, LayerNormalization, Dropout ``` #### 2. 数据准备与预处理 在开始建模之前,必须准备好训练集并对其进行适当转换以便输入到神经网络中。对于时间序列问题来说,通常会涉及到滑动窗口方法来创建样本对[(X_t), (y_{t+1})]。 ```python def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) # 加载数据... dataframe = pd.read_csv('intensity_data.csv', usecols=[1], engine='python') dataset = dataframe.values.astype('float32') train_size = int(len(dataset) * 0.8) test_size = len(dataset) - train_size train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:] look_back = 10 trainX, trainY = create_dataset(train, look_back) testX, testY = create_dataset(test, look_back) ``` #### 3. 构建LSTM模型 定义一个简单的LSTM架构来进行强度预测。这里采用了一个具有单层LSTM单元的顺序模型结构,并设置了合理的超参数以适应具体应用场景的需求[^1]。 ```python lstm_model = Sequential() lstm_model.add(LSTM(50, input_shape=(look_back, 1))) lstm_model.add(Dense(1)) lstm_model.compile(loss='mean_squared_error', optimizer='adam') history_lstm = lstm_model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2) ``` #### 4. Transformer编码器部分的设计 不同于传统的RNN变体,Transformers依赖自注意力机制来自适应地捕捉不同位置间的关系。以下是简化版transformer encoder block 的实现方式: ```python class TransformerBlock(Model): def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1): super().__init__() self.att = MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim) self.ffn = Sequential( [Dense(ff_dim, activation="relu"), Dense(embed_dim), ] ) self.layernorm1 = LayerNormalization(epsilon=1e-6) self.layernorm2 = LayerNormalization(epsilon=1e-6) self.dropout1 = Dropout(rate) self.dropout2 = Dropout(rate) def call(self, inputs, training=False): attn_output = self.att(inputs, inputs) attn_output = self.dropout1(attn_output, training=training) out1 = self.layernorm1(inputs + attn_output) ffn_output = self.ffn(out1) ffn_output = self.dropout2(ffn_output, training=training) return self.layernorm2(out1 + ffn_output) input_layer = Input(shape=(None,)) embedding_layer = Embedding(input_dim=vocab_size, output_dim=emb_dim)(input_layer) pos_encoding = PositionalEncoding(max_len=max_length, d_model=emb_dim)(embedding_layer) transformer_block = TransformerBlock(embed_dim=emb_dim, num_heads=n_head, ff_dim=ff_units) output = transformer_block(pos_encoding) model_transformer = Model(inputs=input_layer, outputs=output) model_transformer.compile(optimizer='adam', loss='mse') history_transfomer = model_transformer.fit(trainX, trainY, epochs=epochs, validation_split=val_split) ``` 请注意,在实际应用中可能还需要调整更多细节配置项,比如正则化策略、优化算法的选择等;此外,上述代码片段仅展示了核心逻辑框架的一部分,完整的项目往往涉及更复杂的流程控制及性能调优工作[^2]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员奇奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值