递归函数
在函数内部,可以调用其他函数。
如果一个函数在内部调用自身本身,这个函数就是递归函数。
def fact(n):
if n==1:
return 1
return n * fact(n - 1)
递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。
使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。
尾递归
解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。
尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。
上面的fact(n)函数由于return n * fact(n - 1)引入了乘法表达式,所以就不是尾递归了。
要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:
def fact(n):
return fact_iter(n, 1)
def fact_iter(num, product):
if num == 1:
return product
return fact_iter(num - 1, num * product)
可以看到,return fact_iter(num - 1, num * product)仅返回递归函数本身,num - 1和num * product在函数调用前就会被计算,不影响函数调用。
fact(5)对应的fact_iter(5, 1)的调用如下:
fact_iter(5, 1)
fact_iter(4, 5)
fact_iter(3, 20)
fact_iter(2, 60)
fact_iter(1, 120)
120
python好像没有对尾递归做优化
汉诺塔,最经典
将n-1个盘子借助柱子C从A到B
将第n个盘子从A到C
将n-1个盘子借助柱子A从B到C
def move(n,a,b,c):
if n == 1:
print('第%s个盘子'%(n),a,'-->',c)
elif n>1:
move(n-1,a,c,b)
print('第%s个盘子'%(n),a,'-->',c)
move(n-1,b,a,c)
move(4,'A','B','C')