98、软件需求共享理解的提出模型解析

软件需求共享理解的提出模型解析

1. 引言

在软件开发领域,需求工程(RE)的沟通方面至关重要,其重要性常常掩盖了实际的技术复杂性。有效沟通与分析师策略之间的关系十分复杂,在实证和理论层面都尚未得到充分理解。从不同角度来看,软件工程领域对人为因素进行了多方面研究,例如软件开发中的团队软技能或个人在特定任务(如代码审查)中的有效执行能力,都与软件生命周期阶段相关。

2. 共享理解的概念化

共享理解的概念在相关文献中颇具争议。不同学者对其有不同的定义:
- Brown 认为共享理解是构建于解决问题背景中的过程,能让利益相关者参与更丰富的环境。
- Tan 指出共享理解强调共享意义的必要性,即消息接收者准确解码发送者所选认知对象的程度。
- Barraquand 和 Reignier 觉得共享理解意味着发送者和接收者能够感知或推断出相同的事实。
- Grossberg 提出当一个人的意思与另一个人已有的意思相匹配时,就产生了共享理解。
- Urquhart 则将共享理解定义为人们赋予所见所闻意义,并理解所接收信息的方式。

一些人将共享理解视为可测量的具体现象,而另一些人则将其看作可观察和暗示但无法测量的过程或抽象概念。信息系统(IS)领域的多项研究探讨了共享理解的概念化以及影响它的因素,发现共享理解有助于将信息系统与业务领域相关联,促进信息系统的成功,提升信息系统和业务的绩效。

不同研究还从不同角度对共享理解进行了定义和探讨:
- Zhao 定义为首席信息官和高层管理团队对信息系统在组织内角色的共享理解程度。
- Deshpande 认为是个体通过互动过程达成的共同基础或相互知识,对通

内容概要:本文详细介绍了一个基于布谷鸟搜索算法(CS)与注意力机制长短期记忆网络(ALSTM)融合的风电功率预测项目实例,旨在通过智能优化与深度学习相结合的方法提升预测精度。项目涵盖了从数据预处理、特征工程、CS算法优化ALSTM超参数、注意力机制增强模型对关键时序特征的关注能力,到模型训练、预测及结果可视化的完整流程。文中还提供了MATLAB代码示例,包括数据填补、归一化、滑动窗口构建样本、CS算法实现、ALSTM建模与训练、预测反归一化、误差评估及注意力权重可视化等关键环节,展示了CS-ALSTM模型在应对风电数据高波动性、非线性、噪声干扰和长序列依赖等问题上的有效性。; 适合人群:具备一定机器学习与深度学习基础,熟悉MATLAB编程,从事新能源预测、智能电网、时间序列分析等相关领域的研究人员或工程师,尤其是工作1-3年希望提升模型优化与实战能力的技术人员; 使用场景及目标:①应用于风电场功率预测,提升预测精度以优化电网调度与能源消纳;②研究智能优化算法(如CS)与深度学习模型(如ALSTM)的融合机制;③开展太阳能、负荷等其他时序预测任务的模型开发与参数自动优化; 阅读建议:此资源以实际项目为导向,强调算法实现与工程应用结合,建议读者在理解模型架构基础上,动手复现代码并调试参数,重点关注CS算法的全局寻优过程与注意力机制的可视化分析,深入掌握模型优化逻辑与预测性能提升路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值