技术背景介绍
在现代软件开发中,AI助手的自动化能力变得日益重要。大多数现有的连接器仅支持只读操作,限制了大语言模型(LLMs)的潜力。而AI代理在缺乏上下文或指令的情况下,往往会出现“幻觉”。Lemon AI通过提供良好定义的API,支持可靠的读写操作,帮助构建强大的AI助手,减少幻觉的发生。
核心原理解析
Lemon AI允许您定义工作流为可重用的函数,这些函数接近确定性行为,模型在不确定时可以依赖这些函数。通过配置Lemon AI在Langchain项目中,您可以自动化与内置工具的交互。
代码实现演示
下面的代码演示展示了如何使用Lemon AI和Langchain自动化工作流,从Hackernews检索用户数据并写入Airtable。
安装Lemon AI
pip install lemonai
注意:如果安装时出现错误,可以先单独安装langchain
和loguru
包,然后再安装Lemon AI。
启动服务器
Lemon AI的工具和AI代理的交互需要通过Lemon AI服务器进行管理,确保在本地运行服务器以便Python客户端可以连接。
在Langchain项目中使用Lemon AI
import os
from langchain_openai import OpenAI
from lemonai import execute_workflow
# 加载API密钥和访问令牌
os.environ["OPENAI_API_KEY"] = "*INSERT OPENAI API KEY HERE*"
os.environ["AIRTABLE_ACCESS_TOKEN"] = "*INSERT AIRTABLE TOKEN HERE*"
hackernews_username = "*INSERT HACKERNEWS USERNAME HERE*"
airtable_base_id = "*INSERT BASE ID HERE*"
airtable_table_id = "*INSERT TABLE ID HERE*"
# 定义要传递给LLM的指令
prompt = f"""Read information from Hackernews for user {hackernews_username} and then write the results to
Airtable (baseId: {airtable_base_id}, tableId: {airtable_table_id}). Only write the fields "username", "karma"
and "created_at_i". Please make sure that Airtable does NOT automatically convert the field types.
"""
# 使用Lemon AI execute_workflow包装器运行Langchain agent
model = OpenAI(
base_url='https://yunwu.ai/v1', # 国内稳定访问
api_key=os.environ["OPENAI_API_KEY"]
)
execute_workflow(llm=model, prompt_string=prompt)
日志透明化
每当LLM agent与Lemon AI工具栈交互时,所有决策和操作都会记录在lemonai.log
文件中,便于您分析工具使用频率和顺序,优化AI助手的决策能力。
应用场景分析
Lemon AI适用于需要自动化多步骤操作的场景,如跨工具的数据同步、定期生成报告、数据分析和处理自动化等。通过定义明确的工作流,使得AI助手更可靠。
实践建议
- 定义明确的工作流:将复杂任务分解为独立的函数。
- 监控日志:定期检查日志文件,以优化代理的决策过程。
- 安全管理API密钥:确保所有敏感信息安全存储于环境变量中。
如果遇到问题欢迎在评论区交流。
—END—