【线性代数笔记】矩阵的特征值和特征向量在哪些变换过程中变化?

前置知识:
定理1 A A A n n n阶方阵,若 ∃ \exists 可逆矩阵 P P P使得 P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ(其中 Λ \Lambda Λ为对角矩阵),则相似变换矩阵 P P P的每一列为 A A A的特征向量。
证明:将 P P P按列分块得 P = [ x 1 , x 2 , ⋯   , x n ] P=[x_1,x_2,\cdots,x_n] P=[x1,x2,,xn]
P − 1 A P = Λ ⟺ A P = P Λ ⟺ A [ x 1 , x 2 , … , x n ] = [ x 1 , x 2 , ⋯   , x n ] [ λ 1 λ 2 ⋱ λ n ] ⟺ [ A x 1 , A x 2 , ⋯   , A x n ] = [ λ 1 x 1 , λ 2 x 2 , ⋯   , λ n x n ] P^{-1}AP=\Lambda\Longleftrightarrow\\AP=P\Lambda \Longleftrightarrow\\A[x_1,x_2,\dots,x_n]=[x_1,x_2,\cdots,x_n]\begin{bmatrix}\lambda_1\\&\lambda_2\\&&\ddots\\&&&\lambda_n\end{bmatrix}\Longleftrightarrow\\ [Ax_1,Ax_2,\cdots,Ax_n]=[\lambda_1x_1,\lambda_2x_2,\cdots,\lambda_nx_n] P1AP=ΛAP=PΛA[x1,x2,,xn]=[x1,x2,,xn]λ1λ2λn[Ax1,Ax2,,Axn]=[λ1x1,λ2x2,,λnxn]
因此 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn A A A得特征向量。


定理2 f ( A ) = a 0 + a 1 A + a 2 A 2 + ⋯ + a n A n f(A)=a_0+a_1A+a_2A^2+\cdots+a_nA^n f(A)=a0+a1A+a2A2++anAn,则对于 A A A的特征向量 λ \lambda λ f ( A ) f(A) f(A)对应的特征向量为 f ( λ ) f(\lambda) f(λ),且特征向量不变。
定理3 λ \lambda λ n n n阶可逆矩阵 A A A的特征值,则 λ ≠ 0 \lambda\ne0 λ=0,且 1 λ \frac{1}{\lambda} λ1 A − 1 A^{-1} A1的一个特征值, ∣ A ∣ λ \frac{|A|}{\lambda} λA A ∗ A^* A的一个特征值,特征向量不变。


定理4 A A A n n n阶方阵,且 ∃ \exists 可逆矩阵 P P P使得 P − 1 A P = B P^{-1}AP=B P1AP=B,则 B B B A A A拥有相同的特征值,且 A A A的特征向量 x x x对应 B B B的特征向量 P − 1 x P^{-1}x P1x
证明:设 A x = λ x Ax=\lambda x Ax=λx,由 A = P B P − 1 A=PBP^{-1} A=PBP1 P B P − 1 x = λ x PBP^{-1}x=\lambda x PBP1x=λx,即 B ( P − 1 x ) = λ ( P − 1 x ) B(P^{-1}x)=\lambda(P^{-1}x) B(P1x)=λ(P1x) λ \lambda λ是对应特征值, P − 1 x P^{-1}x P1x是对应的特征向量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值