前置知识:
定理1 设
A
A
A为
n
n
n阶方阵,若
∃
\exists
∃可逆矩阵
P
P
P使得
P
−
1
A
P
=
Λ
P^{-1}AP=\Lambda
P−1AP=Λ(其中
Λ
\Lambda
Λ为对角矩阵),则相似变换矩阵
P
P
P的每一列为
A
A
A的特征向量。
证明:将
P
P
P按列分块得
P
=
[
x
1
,
x
2
,
⋯
,
x
n
]
P=[x_1,x_2,\cdots,x_n]
P=[x1,x2,⋯,xn]。
P
−
1
A
P
=
Λ
⟺
A
P
=
P
Λ
⟺
A
[
x
1
,
x
2
,
…
,
x
n
]
=
[
x
1
,
x
2
,
⋯
,
x
n
]
[
λ
1
λ
2
⋱
λ
n
]
⟺
[
A
x
1
,
A
x
2
,
⋯
,
A
x
n
]
=
[
λ
1
x
1
,
λ
2
x
2
,
⋯
,
λ
n
x
n
]
P^{-1}AP=\Lambda\Longleftrightarrow\\AP=P\Lambda \Longleftrightarrow\\A[x_1,x_2,\dots,x_n]=[x_1,x_2,\cdots,x_n]\begin{bmatrix}\lambda_1\\&\lambda_2\\&&\ddots\\&&&\lambda_n\end{bmatrix}\Longleftrightarrow\\ [Ax_1,Ax_2,\cdots,Ax_n]=[\lambda_1x_1,\lambda_2x_2,\cdots,\lambda_nx_n]
P−1AP=Λ⟺AP=PΛ⟺A[x1,x2,…,xn]=[x1,x2,⋯,xn]⎣⎢⎢⎡λ1λ2⋱λn⎦⎥⎥⎤⟺[Ax1,Ax2,⋯,Axn]=[λ1x1,λ2x2,⋯,λnxn],
因此
x
1
,
x
2
,
⋯
,
x
n
x_1,x_2,\cdots,x_n
x1,x2,⋯,xn为
A
A
A得特征向量。
定理2 设
f
(
A
)
=
a
0
+
a
1
A
+
a
2
A
2
+
⋯
+
a
n
A
n
f(A)=a_0+a_1A+a_2A^2+\cdots+a_nA^n
f(A)=a0+a1A+a2A2+⋯+anAn,则对于
A
A
A的特征向量
λ
\lambda
λ,
f
(
A
)
f(A)
f(A)对应的特征向量为
f
(
λ
)
f(\lambda)
f(λ),且特征向量不变。
定理3 设
λ
\lambda
λ为
n
n
n阶可逆矩阵
A
A
A的特征值,则
λ
≠
0
\lambda\ne0
λ=0,且
1
λ
\frac{1}{\lambda}
λ1为
A
−
1
A^{-1}
A−1的一个特征值,
∣
A
∣
λ
\frac{|A|}{\lambda}
λ∣A∣为
A
∗
A^*
A∗的一个特征值,特征向量不变。
定理4 设
A
A
A为
n
n
n阶方阵,且
∃
\exists
∃可逆矩阵
P
P
P使得
P
−
1
A
P
=
B
P^{-1}AP=B
P−1AP=B,则
B
B
B与
A
A
A拥有相同的特征值,且
A
A
A的特征向量
x
x
x对应
B
B
B的特征向量
P
−
1
x
P^{-1}x
P−1x。
证明:设
A
x
=
λ
x
Ax=\lambda x
Ax=λx,由
A
=
P
B
P
−
1
A=PBP^{-1}
A=PBP−1得
P
B
P
−
1
x
=
λ
x
PBP^{-1}x=\lambda x
PBP−1x=λx,即
B
(
P
−
1
x
)
=
λ
(
P
−
1
x
)
B(P^{-1}x)=\lambda(P^{-1}x)
B(P−1x)=λ(P−1x),
λ
\lambda
λ是对应特征值,
P
−
1
x
P^{-1}x
P−1x是对应的特征向量。