MIT线性代数笔记-第21讲-特征值,特征向量

21.特征值,特征向量

对于一个方阵 A A A,若 A x ⃗ = λ x ⃗ A \vec{x} = \lambda \vec{x} Ax =λx ,即 A x ⃗ A \vec{x} Ax 平行于 x ⃗ \vec{x} x ,那么 λ \lambda λ A A A的特征值, x ⃗ \vec{x} x A A A的特征向量,特征向量不可为 0 ⃗ \vec{0} 0

  1. λ = 0 \lambda = 0 λ=0时, x ⃗ \vec{x} x 属于 A A A的零空间,而可逆矩阵的零空间只有 0 ⃗ \vec{0} 0 ,所以可逆矩阵的特征值不可能为 0 0 0

  2. 依几何意义可知,某空间的投影矩阵的特征向量只可能是正交于该空间的向量或者是该空间中的向量,二者对应的特征值分别为 0 , 1 0 , 1 0,1

  3. 单位矩阵的特征向量可以是 0 ⃗ \vec{0} 0 之外的任意向量,且特征值总是 1 1 1

  4. 对于置换矩阵,如果只置换了几行且未置换的行中有非零行,那么特征向量是在置换中达成闭环的那几组行内部分别相等的向量,特征值为 1 1 1;反之,特征向量是在置换中达成闭环的那几组行内部分别相等且不全为 0 0 0的向量或者是在置换中达成闭环的那几组行内部分别绝对值相等且不全为 0 0 0且每组行内部正数负数数量一致的向量,二者对应的特征值分别为 1 , − 1 1 , -1 1,1

  5. 求解特征向量和特征值

    变形得: ( A − λ I ) x ⃗ = 0 ⃗ (A - \lambda I) \vec{x} = \vec{0} (AλI)x =0 ,又 x ⃗ ≠ 0 ⃗ \vec{x} \ne \vec{0} x =0 ,所以 A − λ I A - \lambda I AλI为一个奇异矩阵,即 ∣ A − λ I ∣ = 0 |A - \lambda I| = 0 AλI=0,这个方程称作特征(值)方程

    使用特征方程解得 λ \lambda λ,代入原方程可求得 x ⃗ \vec{x} x

    例: A = [ 3 1 1 3 ] A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} A=[3113],则 ∣ A − λ I ∣ = ∣ 3 − λ 1 1 3 − λ ∣ = ( 3 − λ ) 2 − 1 = 0 |A - \lambda I| = \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 - 1 = 0 AλI= 3λ113λ =(3λ)21=0,解得 λ 1 = 2 , λ 2 = 4 \lambda_1 = 2 , \lambda_2 = 4 λ1=2,λ2=4

    ​    A − λ 1 I = [ 1 1 1 1 ] A - \lambda_1 I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} Aλ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寒蜩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值