目录
21.特征值,特征向量
对于一个方阵 A A A,若 A x ⃗ = λ x ⃗ A \vec{x} = \lambda \vec{x} Ax=λx,即 A x ⃗ A \vec{x} Ax平行于 x ⃗ \vec{x} x,那么 λ \lambda λ是 A A A的特征值, x ⃗ \vec{x} x是 A A A的特征向量,特征向量不可为 0 ⃗ \vec{0} 0
-
当 λ = 0 \lambda = 0 λ=0时, x ⃗ \vec{x} x属于 A A A的零空间,而可逆矩阵的零空间只有 0 ⃗ \vec{0} 0,所以可逆矩阵的特征值不可能为 0 0 0
-
依几何意义可知,某空间的投影矩阵的特征向量只可能是正交于该空间的向量或者是该空间中的向量,二者对应的特征值分别为 0 , 1 0 , 1 0,1
-
单位矩阵的特征向量可以是 0 ⃗ \vec{0} 0之外的任意向量,且特征值总是 1 1 1
-
对于置换矩阵,如果只置换了几行且未置换的行中有非零行,那么特征向量是在置换中达成闭环的那几组行内部分别相等的向量,特征值为 1 1 1;反之,特征向量是在置换中达成闭环的那几组行内部分别相等且不全为 0 0 0的向量或者是在置换中达成闭环的那几组行内部分别绝对值相等且不全为 0 0 0且每组行内部正数负数数量一致的向量,二者对应的特征值分别为 1 , − 1 1 , -1 1,−1
-
求解特征向量和特征值
变形得: ( A − λ I ) x ⃗ = 0 ⃗ (A - \lambda I) \vec{x} = \vec{0} (A−λI)x=0,又 x ⃗ ≠ 0 ⃗ \vec{x} \ne \vec{0} x=0,所以 A − λ I A - \lambda I A−λI为一个奇异矩阵,即 ∣ A − λ I ∣ = 0 |A - \lambda I| = 0 ∣A−λI∣=0,这个方程称作特征(值)方程
使用特征方程解得 λ \lambda λ,代入原方程可求得 x ⃗ \vec{x} x
例: A = [ 3 1 1 3 ] A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} A=[3113],则 ∣ A − λ I ∣ = ∣ 3 − λ 1 1 3 − λ ∣ = ( 3 − λ ) 2 − 1 = 0 |A - \lambda I| = \begin{vmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^2 - 1 = 0 ∣A−λI∣= 3−λ113−λ =(3−λ)2−1=0,解得 λ 1 = 2 , λ 2 = 4 \lambda_1 = 2 , \lambda_2 = 4 λ1=2,λ2=4
A − λ 1 I = [ 1 1 1 1 ] A - \lambda_1 I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} A−λ