漫步数学分析三十三——可微的条件

因为雅克比矩阵给出了有效的计算方法,因此我们知道通常的偏导存在就意味着导数 Df 存在。不幸的是这结论在一般情况下是不成立的,例如将 f:R2R 定义为 y=0,f(x,y)=x;x=0,f(x,y)=y; 其余情况下 f(x,y)=1 ,那么 f/x,f/y (0,0) 处存在并等于1。然而 f (0,0)处不连续,所以 (0,0) 处的导数 Df 不存在,如图1所示。


这里写图片描述
图1

这种行为其实非常好理解,偏导只与 x,y 轴方向上的有关,而 Df 的定义涉及到给定点整个邻域中 f 的行为。

然而我们可以给出如下断言。

4 ARn 是一个开集, f:ARnRm ,假设 f=(f1,,fm) 。如果每个偏导 fj/xj 存在且在 A 上连续,那么f A 上可微。

现在我们讨论方向导数。

3 f 是实值函数,定义在x0Rn的邻域内,令 eRn 是一个单位向量,那么

ddxf(x+te)t=0=limt0f(x0+te)f(x0)t

称为 f x0 e 方向上的方向导数(directional derivative)。

从这个定义可以看出,方向导数仅仅是f e 方向上的变化率;如图???所示。

我们断言 e 方向上的方向导数等于Df(x0)e,为了明白这个断言,我们仅仅将其看成 Df(x0) x=x0+te 时候的定义;这样的话我们就得到如果 |t| 充分小,那么对任意的 ε>0

f(x0+te)f(x0)tDf(x0)eεe

这就证明了如果 f x0处可微,那么方向导数也存在并且由

limt0f(x0+te)f(x0)t=Df(x0)e

给定。


这里写图片描述
图2

特别地,通过观察可以看出 f/xi f 在第i个坐标轴方向上( e=ei=(0,0,,0,1,0,,0) )的导数。

注意对于函数 f:R2R ,方向导数 Df(x0)e 可以确定 f 图像的切平面,即直线l,z=f(x0)+Df(x0)te f 图像的切线,因为就像图2那样,Df(x0)e 仅仅是 f e方向上的变化率,因此 f (x0,f(x0))处的切平面可以用方程

z=f(x0)=Df(x0)(xx0)

(如图3所示)来描述。因为我们还没有定义曲面上切平面的概念,所以我们将上面的方程作为切平面的定义。


这里写图片描述
图3

1 说明一个点处的所有方向导数都存在不一定代表可微。

我们考虑 f:R2R

f(x,y)={xy(x2+y),0,x2yx2=y

那么如果 e=(e1,e2) ,当 t0

1tf(te1,te2)=1tt2e1e2t2e21+te2=te1e2t2e21+te2e1

所以 (0,0) 处所有方向导数均存在,但是 f (0,0)处不连续,因为当 x2 靠近 y f 会非常大(例如,给定δ,M,选择 (x,y) 使得 x2=y+ε,(x,y)<δ ,那么 f(x,y)=xy/ε ,这就表明 ε 很小时 f(x,y) 可以比 M 还大,从而f D((0,0),δ) (对任何 δ>0 )上不是有界的,所以函数在 (0,0) 处不是连续的)故根据定理3, f (0,0)处不是可微的。

注意:这个实例说明所有方向导数存在不是一个方便的微分定义,因为它甚至连续性都不能保证,这也是为何我们在定义1 中使用了更加严格的概念。

2 f(x,y)=x2+y ,计算 f 图像在x=1,y=2处切平面方程。

这里 Df(x,y) 有矩阵

(fx,fy)=(2x,1)

所以 Df(1,2)=(2,1) ,从而切平面方程变成

z=3+(2,1)(x1y2)=3+2(x1)+(y2)


2x+yz=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值