简要介绍 | 知识蒸馏:轻量级模型的智慧之源

知识蒸馏是将大型神经网络的知识迁移到小型模型,降低计算复杂度并提高性能。它通过让学生模型学习教师模型的输出概率分布进行训练。尽管取得进展,但优化方法、知识迁移有效性及计算效率仍是挑战。未来,知识蒸馏有望在轻量级模型应用中发挥更大作用。

注1:本文系“简要介绍”系列之一,仅从概念上对知识蒸馏进行非常简要的介绍,不适合用于深入和详细的了解。

知识蒸馏:轻量级模型的智慧之源

在这里插入图片描述

A Gentle Introduction to Hint Learning & Knowledge Distillation | by LA Tran | Towards AI

在深度学习领域,使用大型神经网络模型通常能够获得更好的性能。然而,这些模型往往具有 高计算复杂度 ,不适合在边缘设备上部署。知识蒸馏(Knowledge Distillation)是一种将大型模型的知识迁移到小型模型中以提高其性能的技术,具有广泛的应用前景。本文将

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NLOS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值