注1:本文系“简要介绍”系列之一,仅从概念上对知识蒸馏进行非常简要的介绍,不适合用于深入和详细的了解。
知识蒸馏:轻量级模型的智慧之源

A Gentle Introduction to Hint Learning & Knowledge Distillation | by LA Tran | Towards AI
在深度学习领域,使用大型神经网络模型通常能够获得更好的性能。然而,这些模型往往具有 高计算复杂度 ,不适合在边缘设备上部署。知识蒸馏(Knowledge Distillation)是一种将大型模型的知识迁移到小型模型中以提高其性能的技术,具有广泛的应用前景。本文将
知识蒸馏是将大型神经网络的知识迁移到小型模型,降低计算复杂度并提高性能。它通过让学生模型学习教师模型的输出概率分布进行训练。尽管取得进展,但优化方法、知识迁移有效性及计算效率仍是挑战。未来,知识蒸馏有望在轻量级模型应用中发挥更大作用。
订阅专栏 解锁全文
860

被折叠的 条评论
为什么被折叠?



