无线感知论文阅读笔记 | TRS 2023, DeepEgo: Deep Instantaneous Ego-Motion Estimation Using Automotive Radar

本文介绍了DeepEgo,一种使用车载毫米波雷达进行实时自运动估计的方法。通过神经网络处理雷达点云,结合加权最小二乘法和创新的多普勒损失函数,DeepEgo提高了准确性、稳定性和运行效率。实验证明,DeepEgo在实际汽车雷达数据集上的表现优于现有方法,尤其在旋转速度估计和长期稳定性方面表现出色。
摘要由CSDN通过智能技术生成

原文链接:https://mp.weixin.qq.com/s?__biz=Mzg4MjgxMjgyMg==&mid=2247486296&idx=1&sn=593f29ee45f66782e90b247b635696d1&chksm=cf51b9a1f82630b7c6ac427f98bb03c18015b6b1865fec22a8c2465768c6fdf463a5c81ef305#rd

TRS 2023 | DeepEgo: Deep Instantaneous Ego-Motion Estimation Using Automotive Radar

无线感知论文阅读笔记 | TRS 2023, DeepEgo: Deep Instantaneous Ego-Motion Estimation Using Automotive Radar

picture 0

Abstract

  • 目标

    • Study ego-motion estimation with mm-wave radar
  • Propose DeepEgo for robust and accurate estimation

    • 使用神经网络从点云中提取特征
    • 应用加权最小二乘进行运动估计
    • 新的损失函数:提出多普勒损失定位内点
  • Experiments

    • Test on real-world automotive radar dataset
    • Show improvements in accuracy, stability and runtime

1 Introduction

  • 背景

    • 高级驾驶系统(ADS)需要实时的自我运动估计

    • 传统方法(如IMU、车轮编码器和GPS)存在诸多问题 ⇒ \Rightarrow 采用其他传感器技术(如摄像头、激光雷达、合成孔径声纳、扫描雷达或汽车雷达)进行自我运动估计

    • 汽车雷达具有一定优势

      ✅ 如适应各种天气和照明条件、对线视遮挡的敏感性较低、轻量化、低成本和紧凑

      ❌ 尽管汽车雷达具有潜在优势,但仍存在挑战,如较少的几何特征、假正例、漏检、雷达截面波动、多路径反射和互干扰等。

  • 本文:DeepEgo

    • 基于神经网络的端到端自我运动估计解决方案,避免了具有挑战性的数据关联任务

    • 提出了一种混合方法:

      🚩 神经网络学习如何加权雷达点云中的每个点

      🚩 加权最小二乘法(WLS)用于计算最终的估计结果

    • 提出了一种新颖的损失函数: 多普勒损失

      🚩 多普勒损失可以帮助网络自动定位雷达点云中的“内点”,而无需手动标注 ⇒ \Rightarrow important to WLS

    • 实验

      🚩 使用具有挑战性的真实汽车雷达数据集RadarScenes, 与6个baselines比较

      🚩 Improves accuracy by over 50%

  • 章节安排

    • section 2: related work
    • section 3: design details of the proposed method
    • section 4: performance of the proposed method
    • section 5: ablation study
    • section 6: conclusions and future studies

2 RELATED WORKS

  1. 使用汽车雷达进行自我运动估计

    • ICP and NDT are early iterative matching methods, but have limitations
    • Kellner et al. propose single-frame estimation method based on radial velocity profile
    • But Kellner method has difficulty in parameter tuning and cannot fully utilize other radar information
  2. 点云深度学习

    • Image projection methods destroy point cloud structure
    • Voxel-based methods have high computational and memory costs
    • Point-based methods like PointNet can directly process high-dim sparse radar point clouds
    • This paper:

    ✅ believe point-based methods are more suitable for preserving precise geometry, processing automotive radar data

3 METHODOLOGY

A. Problem Statement
  • 本文考虑多维雷达点云 P t , n J × M P^{J×M}_{t,n} Pt,nJ×M

    • t t t 雷达扫描的时间戳
    • n n n 雷达索引
    • J J J 检测到的点的数量
    • M M M 点云中每个点的特征数量
  • 车辆运动状态: e c = [ v x c , v y c , ω c ] e_c = [v^c_x, v^c_y, \omega^c] ec=[vxc,vyc,ωc]

    • 2D坐标系的原点位于车辆质心处,x轴方向与车辆的距离方向运动一致,y轴方向与车辆的横向运动一致

    • v x c v^c_x vxc 距离方向速度
    • v y c v^c_y vyc 横向速度
    • ω c \omega^c ωc 旋转速度
    • c c c 测试车辆
  • 汽车雷达

    • n n n
    • 安装位置 [ x n c , y n c , θ n c ] [x^c_n, y^c_n, \theta^c_n] [xnc,ync,θnc]
    • 其中 x n c x^c_n xnc 到x轴距离
    • y n c y^c_n ync 到y轴的距离
    • θ n c \theta^c_n θnc 相对于车辆x轴的安装角度

雷达测量的是它自身与检测对象之间的相对运动 ⇒ \Rightarrow 可将车辆坐标系中的自我运动转换到雷达坐标系

  • 坐标转换
    • 对于雷达坐标系,通常假设x轴方向与雷达的视线方向一致

    • 雷达 n n n的2D运动状态: e n = [ v x n , v y n , ω n ] e_n = [v^n_x, v^n_y, \omega^n] en=[vxn,vyn,ωn]

      v x n v^n_x vxn 距离方向速度

      v y n v^n_y vyn 横向速度

      ω n \omega^n ωn 旋转速度

    • ω n = ω c \omega_n = \omega_c ωn=ωc: 刚体上的所有点经历相同的角速度

    • 因此, 运动状态 e c e_c ec e n e_n en

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R.X. NLOS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值