ChatGLM-6B+LangChain与训练及模型微调教程

本文介绍了吴恩达教授关于LangChain+ChatGLM-6B的LLM应用开发实践教程,涉及如何使用Langchain-Chatchat项目,该项目是基于Langchain和类似ChatGLM的语言模型构建的本地知识库问答应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

根据引用和引用的内容,可以使用ChatGLM-6B模型结合langchain实现对话中的本地知识库链接。ChatGLM-6B模型在多轮对话和长答案生成方面可能存在上下文丢失和理解错误的情况,为了解决这个问题,可以通过微调ChatGLM-6B模型并使用langchain来加强其多轮对话能力。具体操作是将ChatGLM-6B模型的路径替换为经过P-Tuning微调后的checkpoint地址,从而使得模型能够在多轮对话中进行适当的回复。请注意,目前的微调还不支持多轮数据,所以只有对话第一轮的回复是经过微调的。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [ChatGLM2-6B的P-Tuning微调](https://blog.csdn.net/weixin_43815222/article/details/131553200)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [ChatGLM2-6B、ChatGLM-6B 模型介绍及训练自己数据集实战](https://blog.csdn.net/dream_home8407/article/details/130099656)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值