FPGA实现BP神经网络-原理

FPGA实现BP神经网络

一.激活函数

1.利用平滑插值法对神经网络的激励函数进行实现

下面将介绍BP神经网络常用的激活函数。

1.1 简单线性函数

神经元功能函数 f 连续取值,输入 x 由连接矩阵 W 加权产生输出,如图:
在这里插入图片描述

1.2 Sigmid函数

神经元的输出限制在[-1 :+1]之间的连续非减函数,此时称为双极性Sigmoid函数;同理,当此函数最小值向上平移1个单位长度后,神经元的输出限制在[0 :+1]之间的连续非减函数,此时成为单极性Sigmoid函数。我们生活中默认的S函数指的就是双极性Sigmoid函数。两者如图所示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

激励函数的选取与神经网络的类型有关,同一神经网络的不同层激励函数也不相同,BP 神经网络的输出层一般采用线性激活函数,而隐含层一般采用 S 型函数(Sigmoid)。可以看出双极性和单极性Sigmoid函数的大概形状都相似,本文设计的基于 FPGA 的 BP 神经网络采用了双极性 S 函数,原因如下:

  1. 双极性Sigmoid有正有负,单极性Sigmoid只有正的,对于复杂函数,大多都存在负向关系,则选用双极性 S 型函数。
  2. 在-1<x<+1 范围内,双极性 S 函数比单极性 S 函数的导函数变化快,所以对误差修正的幅度也更大,更有利于整个神经网络的快速收敛。
  3. 在收敛误差相同时,双曲正切的收敛速度比 S 型函数快,这样更容易避免达到局部最小。
  4. 在利用 Verilog 语言在 FPGA 实现激活函数时,因为双曲正切函数关于原点对称,所以只需要设计正区间内的函数,然后通过负向结果取绝对值的方式实现整个函数,更能够节省逻辑资源。

在采用 FPGA 设计神经网络的整个过程中,激活函数的实现方法至关重要,直接决定着所设计网络的整体性能。由于神经网络并行运算,需要用到大量乘法器,所以在神经网络的激励信号实现中尽可能少的使用乘法器,资源是设计激励函数合成系统的一个标准。所以根据前面介绍,FPGA 由于其自身的限制,不能直接实现非线性的双极性 S 函数。因此,只有通过间接逼近的方法对其进行实现,以下为在 FPGA 上实现非线性函数的几种常用方法:

  1. Taylor 级数法
    Taylor 级数法是一种高精度实现激励函数的方法。但是利用五阶 Taylor 级数展开对双极性 S 函数进行逼近,会占用 FPGA 的大量逻辑资源。虽然如今的 FPGA 芯片中已经集成了大量的乘法器,但 FPGA 需要进行大量的乘累加运算,所以除非对精度要求过高,一般不采用这种方式实现激励函数。
  2. 查表法
    人们最早利用 FPGA 设计神经网络时,大多采用查表法来实现激励函数。这种方法是将激励函数的输入作为存储地址,然后将其对应的值写入 RAM 和 ROM 中,当有输入时,通过查找表就能输出对应的输出值。这种利用表格建立输入输出的关系来实现激励函数的方法被称为查表法,表格的大小决定了激励函数的精度。这种方式操作简单,不需要进行复杂设计就能够在理论上逼近任意函数。但是,当精度要求过高时,查表法会耗费大量的存储资源,所以高精度网络的激活函数不适合利用查表法来实现。
  3. 分段线性逼近法
    实现激励函数过程中,可将激励函数划分为不同区间,然后利用线性函数y=ax+b对其进行拟合,并取其中间值为该区间内激励函数的逼近值。其他文章中提出利用线性函数将激励函数 sigmoid 分为 15 段进行线性拟合,而线性函数中的乘法运算通过移位的形式来实现,这种方法可以有效的节省资源,但是不能精准的保证移位操作实现的 2 的 n 次幂的线性函数能够拟合整个 S 型函数,所以误差较大,且由于分区过多,实现相对复杂。
  4. 坐标旋转数字计算方法
    CORDIC 又称为坐标旋转数字计算方法,早在 1959 年就被 Voldor 提出,然后逐渐从三角函数运算推广到复杂函数的运算,这是常用的一种硬件实现算法。CORDIC算法其实是一种利用移位和加减来消去乘除运算的迭代算法。可以有效地解决 FPGA的资源,为了提高其精度,常与查表法相结合,从而获得更高的效率。
    综上所述,以上方法各有利弊,对于硬件实现激活函数,需要综合考虑多方面因素,这就意味着逼近效果最好的方式不一定适合硬件实现。本文通过综合考虑,选择分段函数与查表法相结合的平滑插值法对双曲正切函数进行逼近。

2 双极性 S 函数的平滑插值法逼近

除了上述几种的常用的方法外,学者们经过不断的研究实验又陆续提出了利用STAM 算法近似以及最佳等距线性逼近等方法,这些方法都各有利弊。FPGA 实现激励函数的关键问题就是寻找一个精度与资源的平衡,本文通过综合考虑,选择分段函数与查表法相结合的平滑插值法对双曲正切函数进行逼近。这种函数逼近法实质上就是通过一系列的线性函数来对激励函数进行拟合,然后所得系数利用查表的方式表示出来。将激励函数分为不同的区间,并运用最小二乘法对多项式进行拟合,最终用曲线、直线以及常数相结合的方式将双曲正切函数表示出来。因为双曲正切函数的正区间与负区间关于原点对称,所以为了节省资源,在取负值时,通过取绝对值带入正值区域再取反的形式获得,这种方式有效的节约了对 FPGA 资源的利用。 最小二乘法的原理推导可以自行百度。

2.1 双极性 S 函数的拟合

因为双曲正切函数关于原点对称,所以只需要拟合正区间的函数即可,文中把正区间分为[0, 1]、[1, 2]、[2, 3]、[3, 4]、[4,无穷]五段对其行逼近,根据最小二乘法原理,采用多项式拟合的方式,求出相应的系数。图 3-2 为分段函数在[0, 1]、[1, 2]、[2, 3]、[3, 4]对双曲正切函数进行分段逼近情况。
在这里插入图片描述
可分别求得每一段的拟合函数表达式,如下图:
在这里插入图片描述

2.2 双极性 S 函数硬件实现以及误差分析

可以得出基于 FPGA 的激励函数的实现步骤:首先按照对称原则,选取双曲正切函数正区间进行逼近,并划分成[0, 1]、[1, 2]、[2, 3]、[3, 4]、[4, 无穷]五段区间。然后根据最小二乘法原理,求得逼近线段 y=kx^2+b 的系数k、b;转化成相应的数据格式,以备硬件实现。最后利用硬件描述语言 Verilog 编写函数对激励函数进行实现。 通过对实现原理的分析,双曲正切激励函数的硬件实现电路如图 3-4 所示。首先,需要将所获得的 k、b 值存储在 2 个 ROM、RAM 中,计算时先要对输入 x 的值取绝对值,然后再利用查表法找出其所对应的 k、b 值,然后再通过乘法和加法运算来对激励函数进行运算,这种方法操作简单、计算速度较快且利用查表法能够节省更多的逻辑资源。在这里插入图片描述

二. FPGA存储技术

如果在学习过程中,每次更新后的权值都存储在 SRAM 和 DRAM 等外部存储器中,由于其带宽限制,数据很难达到并行输入输出,使其不能直接满足计算需求,无法进行并行计算,就失去了硬件实现神经网络的意义。为了能够使神经网络网络能够达到真正的并行输入输出,寻找一种合理的存储中间数据的方式非常重要。

<think>好的,用户想了解如何将BP神经网络部署到FPGA上,需要方法教程。首先,我需要结合提供的引用内容,特别是引用[1]和[2],因为它们提到了FPGA在加速神经网络计算中的应用。 首先,我得回顾BP神经网络的基本结构和工作原理,确保理解反向传播算法中的权重更新过程。然后,FPGA的特点是高并行性和可定制性,适合处理神经网络中的矩阵运算和并行计算任务。接下来,部署步骤应该包括模型简化、硬件设计、资源优化等。 用户可能需要具体的步骤,比如如何量化模型参数,如何设计硬件架构,以及如何验证部署后的性能。还要考虑FPGA开发工具的使用,如Vivado HLS,以及如何将软件模型转换为硬件描述语言。同时,需要提到优化策略,比如流水线设计和内存管理,这些都是提高效率的关键。 另外,引用中提到的ZYNQ开发板可能涉及到软硬件协同设计,可能需要使用ARM处理器和FPGA结合的方式,处理不同的任务分工。最后,验证部分需要确保精度和速度的平衡,可能涉及测试数据集和实际应用场景的评估。 需要确保回答结构清晰,分步骤说明,同时引用相关文献支持关键点。还要生成相关问题,帮助用户进一步探索,比如优化方法或具体工具的使用。</think>### BP神经网络FPGA部署方法教程 #### 一、部署流程概述 将BP神经网络部署到FPGA需经历以下关键步骤: 1. **模型压缩与量化** - 原始浮点模型需转换为定点数(例如8/16位整数),降低计算和存储需求 - 使用剪枝技术移除冗余连接,减少权重参数30%-50%[^1] - 公式:量化过程可表示为$$ W_{quant} = \text{round}(W_{float} \times 2^b) $$ 其中$b$为量化位数 2. **硬件架构设计** - 采用并行计算单元实现矩阵乘加运算 - 设计分布式存储结构:将权重分段存储在BRAM中,减少数据搬运延迟 - 典型结构包含: - 输入缓存区 - 乘加器阵列 - 激活函数模块(如分段线性实现Sigmoid) 3. **开发工具链选择** - Xilinx Vivado HLS:支持C/C++到RTL的自动转换 - Vitis AI:提供预编译的神经网络加速库 - 自定义IP核开发:针对特定层设计专用计算单元 #### 二、关键实现技术 1. **反向传播硬件化** - 误差计算模块:通过链式法则实现梯度传播 - 权重更新控制器:采用乒乓缓冲区实现在线学习 - 公式:权重更新过程$$ \Delta w_{ij} = \eta \cdot \delta_j \cdot x_i $$ 需映射为定点数乘加操作 2. **资源优化策略** | 资源类型 | 优化方法 | 效果 | |---|---|---| | LUT | 计算单元复用 | 减少20%-40%逻辑占用 | | BRAM | 权重压缩存储 | 节省50%存储空间 | | DSP | 时间复用技术 | 提升3倍计算吞吐量 | 3. **时序控制设计** - 采用流水线结构提升吞吐量 - 设计三级流水:数据读取→计算→结果写回 - 时钟频率通常可达200-400MHz(ZYNQ-7000系列) #### 三、部署验证流程 1. **功能验证** - 使用MNIST数据集进行端到端测试 - 比较FPGA输出与PC仿真结果的误差(通常要求<1%) 2. **性能评估指标** - 吞吐量:每秒处理样本数(Samples/s) - 能效比:每焦耳能量处理的样本数 - 典型优化结果: - 延迟降低5-8倍 - 功耗减少60%-70%(对比GPU方案) #### 四、开发示例(ZYNQ平台) ```cpp // Vivado HLS代码片段(前向传播实现) void bp_forward( ap_int<8> input_layer[INPUT_SIZE], ap_int<16> hidden_layer[HIDDEN_SIZE]) { #pragma HLS PIPELINE II=1 for(int i=0; i<HIDDEN_SIZE; i++){ ap_int<32> sum = 0; for(int j=0; j<INPUT_SIZE; j++){ sum += weights_in[j][i] * input_layer[j]; } hidden_layer[i] = sigmoid(sum >> 8); // 量化位移操作 } } ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

<往事随风>

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值