在当前的人工智能领域,跨模态学习尤其是视觉和语言的结合,正迅速成为一项基础性技术。传统的视觉模型和语言模型大多是分开训练的,处理独立模态的数据。然而,随着视觉-语言模型(Vision-Language Models, VLMs)的兴起,如何将图像和文本信息有效地结合起来进行联合学习成为了一个核心问题。具体来说,如何解决无监督学习环境下的跨模态对齐,已经成为该领域研究中的一个关键技术瓶颈。
目录
什么是跨模态对齐?
跨模态对齐指的是将来自不同模态的数据(如图像和文本)映射到一个共享的表示空间,使得同一实体在不同模态下具有相似的语义表示。例如,当给定一张图片和一段描述这张图片的文字时,我们希望模型能够将图像和文本映射到一个相似的向量空间,使得图像和文本之间的语义关系能够被正确地捕捉。
在无监督学习环境下,这一任务面临着很多挑战。我们没有像传统的监督学习那样,有丰富的人工标注数据来指导模型学习,因此,需要模型自己从未标注的数据中发现图像和文本之间的潜在关系。
1. 跨模态对齐的挑战
1.1 模态差异和表征问题
视觉数据和语言数据在结构上存在本质的差异。图像通常是连续的高维数据,包含了复杂的空间和像素信息;而语言数据是离散的符号,通常呈现为词序列或句子。如何找到一种有效的方式将这两种截然不同的数据格式映射到一个共享空间,是跨模态对齐中的首要难题。
解决这一问题的方法之一是使用共享嵌入空间,即将图像和文本映射到同一个向量空间中,从而可以通过距离度量来判断它们之间的关系。常见的做法是使用卷积神经网络(CNN)提取图像特征,使用Transformer架构来编码文本信息,最后将两者的特征通过某种方式融合,例如对比学习(contrastive learning)框架。
然而,这种方法依赖于如何设计一个好的嵌入空间,这个空间不仅要能够捕捉到图像和文本的语义信息,还要保持两者在该空间中的对齐。这种对齐在无监督学