随机过程(2)——泊松过程

本文深入探讨了泊松过程,包括计数过程的定义、独立增量和平稳增量,泊松过程的两种等价定义,以及间隔时和到达时的定义与性质。文章还涉及非齐次泊松过程、复合泊松分布及其应用,并通过例题解释了泊松过程在实际问题中的运用。
摘要由CSDN通过智能技术生成

1.前言

我如约把这个系列推到了第二篇。最近老师项目催得紧,再加上上周学的东西有点难懂(老师还说是非重点),作业也有点难。
在写这周作业的时候,我就发现回顾一下之前的内容还是很有必要的。因为老师是上完这一章之后统一布置了个作业,三周的课这么多内容,不知道题用什么方法解。
泊松过程主要分为下面几块内容讲。
第一个肯定是泊松过程的定义、基本性质之类的。接下来讲间隔时和到达时。然后说到达时的条件分布。最后提一提非齐次的泊松过程。

2.泊松过程的定义

2.1 计数过程

计数过程首先是一个随机过程。若 N ( t ) N(t) N(t)表示截至时间t,时间发生的次数,则称随机过程 { N ( t ) , t ≥ 0 } \{N(t),t\geq0\} { N(t),t0}为计数过程。也就是说 N ( t ) N(t) N(t)满足如下条件。
i) N ( t ) ≥ 0 N(t)\geq0 N(t)0
ii) N ( t ) N(t) N(t)为整数
iii) 若 s < t , N ( s ) ≤ N ( t ) s<t,N(s)\leq N(t) s<t,N(s)N(t)
iv) 对于 s < t , N ( t ) − N ( s ) s<t,N(t)-N(s) s<t,N(t)N(s)等于事件在区间 ( s , t ] (s,t] (s,t]发生的次数

2.2 计数过程的独立增量和平稳增量

独立增量是指任意不重叠的时间段之间,随机变量的增量相互独立;平稳增量是指对于具有相同时间间隔的增量都服从相同分布。放在计数过程里指的是:
计数过程具有独立增量是指:任意不重叠的时间段之间,事件发生的次数都是相互独立的。
计数过程具有平稳增量是指:在任意时间长度内,事件发生的次数只和时间长度有关。
顺便,由于计数过程的特殊性质,具有平稳增量的计数过程在区间 ( s , s + t ] (s,s+t] (s,s+t]内发生的次数服从的分布为:
[ N ( t + s ) − N ( s ) ] [N(t+s)-N(s)] [N(t+s)N(s)]~ [ N ( t ) − N ( 0 ) ] [N(t)-N(0)] [N(t)N(0)]~ N ( t ) N(t) N(t)

2.3 泊松过程的定义

2.3.1 泊松过程的定义1

i) N ( 0 ) = 0 N(0)=0 N(0)=0
ii) 过程具有独立增量
iii) 在任意时间间隔 t t t内事件发生的次数服从均值为 λ t \lambda t λt的泊松分布。也就是说,对于任意 s , t ≥ 0 s,t\geq0 s,t0,都有:
P [ N ( t ) − N ( s ) = n ] = e − λ t ( λ t ) n n ! , n = 0 , 1 , . . . P[N(t)-N(s)=n]=e^{-\lambda t}\frac{(\lambda t)^n}{n!},n=0,1,... P[N(t)N(s)=n]=eλtn!(λt)n,n=0,1,...
由条件iii)可知,泊松过程具有平稳增量,所以
E [ N ( t ) ] = λ t E[N(t)]=\lambda t E[N(t)]=λt
由于定义的iii)比较难验证,所以有下面的定义2

2.3.2 泊松过程的定义2

i) N ( 0 ) = 0 N(0)=0 N(0)=0
ii) 过程具有独立增量和平稳增量
iii) P [ N ( h ) = 1 ] = λ h + o ( h ) P[N(h)=1]=\lambda h+o(h) P[N(h)=1]=λh+o(h)
iv) P [ N ( h ) ≥ 2 ] = o ( h ) P[N(h)\geq2]=o(h) P[N(h)2]=o(h)
其中, o ( h ) o(h) o(h)表示h的无穷小量,即
l i m h → 0 = o ( h ) / h = 0 {lim}_{h\to 0} =o(h)/h=0 limh0=o(h)/h=0

2.3.3 两种定义等价性证明

过程分为从1到2和从2到1两步。书上有2->1的过程,我不想再抄一遍了。简单分为这几步:
1.利用定义2,求得 P [ N ( t ) − N ( s ) = 0 ] P[N(t)-N(s)=0] P[N(t)N(s)=0]
2.充分利用定义2,将 P [ N ( t ) − N ( s ) = n ] P[N(t)-N(s)=n] P[N(t)N(s)=n]拆开,求得 P [ N ( t ) − N ( s ) = n ] P[N(t)-N(s)=n] P[N(t)N(s)=n]满足的表达式
3.利用数学归纳法验证,对于任意n,定义2满足定义1中的条件3
后面证明非齐次泊松分布时,还会用到这里的证明。
从1->2比较容易证明。有了条件三的表达式,平稳增量是隐含的。然后再利用泰勒公式展开 e − λ t e^{-\lambda t} eλt求得 P [ N ( h ) ] P[N(h)] P[N(h)]

2.3.4 二项分布逼近泊松分布

假设计数过程服从泊松分布,将时间段[0,t]分为等长的k份,且k很大。存在某个t/k的间隔内,事件发生两次及以上的概率为
P ( 存 在 发 生 超 过 2 次 的 时 间 间 隔 ) ≤ Σ i = 1 k P ( 第 i 个 间 隔 内 , 发 生 超 过 2 次 ) = k o ( t / k ) = t o ( t / k ) t / k = 0 , k → ∞ P(存在发生超过2次的时间间隔)\leq \Sigma_{i=1}^{k}P(第i个间隔内,发生超过2次)=ko(t/k)=t\frac{o(t/k)}{t/k}=0,k\to \infty P(2)Σi=1kP(i2)=ko(t/k)=tt/ko(t/k)=0,k
第一个小于等于号是因为概率的次可加性,划分的事件不是两两无交的,因此取小于等于。
因此在每个时间间隔内,事件最多发生一次(以概率1,并非完全不可能,本段文字下同),因此每个时间段都可以分为事件发生一次/不发生。 N ( t ) N(t) N(t)等于事件发生一次的时间段的数目,又由平稳增量和独立增量可知,每个小区间内都遵循独立同分布的二项分布,且概率为 λ t / k \lambda t/k λt/k。所以当 k → ∞ k\to \infty k时, N ( t ) N(t) N(t)具有泊松分布,均值为
N ( t ) = l i m k → ∞ k [ λ t / k + o ( t / k ) ] = λ t + l i m k → ∞ t [ o ( t / k ) / ( t / k ) ] = λ t N(t)=lim_{k\to \infty}k[\lambda t/k+o(t/k)]=\lambda t+lim_{k\to \infty}t[o(t/k)/(t/k)]=\lambda t N(t)=limkk[λt/k+o(t/k)]=λt+limkt[o(t/k)/(t/k)]=λt

3 泊松过程的间隔时,到达时定义

3.1 间隔时的定义

我们知道泊松过程是一个计数过程。之前都是从计数的角度讨论计数过程(也就是讨论n),现在我们换一个角度,从t的角度讨论一下计数过程。
间隔时是指,相邻两个计数发生的时间间隔。n-1次计数到n次计数的时间间隔,记作 X n X_n Xn
首先我们可以求出 X n > t X_n>t Xn>t的概率。间隔时>t说明在[0,t]的时间间隔内,没有事件发生。
P ( X n > t ) = P ( N ( s + t ) − N ( s ) = 0 ) = P ( N ( t ) = 0 ) = e − λ t P(X_n>t)=P(N(s+t)-N(s)=0)=P(N(t)=0)=e^{-\lambda t} P(Xn>t)=P(N(s+t)N(s)=0)=P(N(t)=0)=eλt
同时由独立增量和平稳增量,我们有
P ( X n > t ∣ X n − 1 = s ) = P [ N ( s + t ) − N ( s ) = 0 ∣ X n − 1 = s ] = P [ N ( s + t ) − N ( s ) = 0 ] = P ( N ( t ) = 0 ) = e − λ t P(X_n>t|X_{n-1}=s)=P[N(s+t)-N(s)=0|X_{n-1}=s]=P[N(s+t)-N(s)=0]=P(N(t)=0)=e^{-\lambda t} P(Xn>tXn1=s)=P[N(s+t)N(s)=0Xn1=s]=P[N(s+t)N(s)=0]=P(N(t)=0)=eλt
也就是说,间隔时是独立同分布的!遵循指数分布。这个性质相当重要。

3.2 到达时的定义

到达时,或者说等待时,用公式定义为 如下:
S n = Σ i = 1 n X i S_n=\Sigma_{i=1}^{n}X_i Sn=Σi=1nXi
也就是第n个事件发生的事件,或者说前n个事件发生的间隔时之和。由于 S 1 = X 1 S_1=X_1 S1=X1遵循的指数分布同时也是参数为 ( 1 , λ ) (1,\lambda) (1,λ)的gamma分布,而gamma分布具有可加性,因此 S n S_n Sn遵循参数为 ( n , λ ) (n,\lambda) (n,λ)的gamma分布。这个性质在后面的题目中也可能用到。
其它求到达时的概率密度的方法,有直接对 S n S_n Sn定义求导的方法,也可以使用独立增量的性质求取(把事件分为前t时间段发生n-1次,第[t,t+dt]时间段发生1次),书上都很详细。

3.3 导出泊松过程的第三种定义

由到达时,可以给出泊松过程的第三种定义。
对于一串服从均值为 1 / λ 1/\lambda 1/λ的指数分布的独立同分布的序列 { X n , n ≥ 1 } \{X_n,n\geq1\} { Xn,n1},事件n发生在时间
S n = Σ i = 1 n X i S_n=\Sigma_{i=1}^{n}X_i Sn=Σi=1nXi
处。这个计数过程也就是服从参数为 λ \lambda λ的泊松过程。
这个定义会在后续的更新过程中用到。

4 泊松过程到达时的条件分布

泊松过程到达时的分布已经在上一节给出了,但是为什么这里还要研究它的条件分布呢?因为这个条件分布具有非常好的性质:服从均匀分布。
首先观察第一个到达时的条件分布。如果已知[0,t]之间有一个事件发生,那么到达时的条件分布为
P ( X 1 < s ∣ N ( t ) = 1 ) = P ( X 1 < s , N ( t ) = 1 ) / P ( N ( t ) = 1 ) P(X_1<s|N(t)=1)=P(X_1<s,N(t)=1)/P(N(t)=1) P(X1<sN(t)=1)=P(X1<s,N(t)=1)/P(N(t)=1)
P ( X 1 < s , N ( t ) = 1 ) P(X_1<s,N(t)=1) P(X1<s,N(t)=1)表示[0,s)时间段内发生一次,而[s,t]时间段内没有发生,而不同时间段内的分布是独立的:
P ( X 1 < s , N ( t ) = 1 ) = λ s e − λ s × e − λ ( t − s ) = λ s e − λ t P(X_1<s,N(t)=1)=\lambda se^{-\lambda s}\times e^{-\lambda (t-s)}=\lambda se^{-\lambda t} P(X1<s,N(t)=1)=λseλs×eλ(ts)=λseλt
所以
P ( X 1 < s ∣ N ( t ) = 1 ) = λ s e − λ t / ( λ t e − λ t ) = s / t P(X_1<s|N(t)=1)=\lambda se^{-\lambda t}/(\lambda te^{-\lambda t})=s/t P(X1<sN(t)=1)=

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值