F(x)=积分:f(t)dt;
这个F(X)随机变量分布函数,f(x)是概率密度函数
概率密度函数的性质4:
若f(X)在点x处连续,则有F'(X)=f(x)
这个公式里:概率密度函数等于F'(X)的导数。
再来看导数的定义:
又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近
理解:
如图:我们怎么求的N的值呢,可以根据积分的思想,即 ∫f(x)dx。即由于导数是斜率,则每步递增的△y=f(x)dx 所有累加就是N的值。
而如果再把坐标系的y轴定为f(x),则f(x)*dx即使围成的面积的积分。(认为是一个个小的长方形)
导数由于是斜率:所以导数f(x)一定是△y/△x