正态分布概率密度函数的积分

正态分布概率密度函数的积分
I = ∫ − ∞ ∞ 1 2 π σ e − ( x − μ ) 2 2 σ 2 d x \begin{aligned} I = \int _{- \infty} ^{\infty} \frac{1}{\sqrt{2 \pi} \sigma} e ^ {- \frac{(x - \mu) ^2}{2 \sigma ^ 2}} dx \end{aligned} I=2π σ1e2σ2(xμ)2dx

指数中包含二次项,无法直接求解,需要做一些变换。

夹逼定理

F ( x ) , G ( x ) F(x), G(x) F(x),G(x) x 0 x_0 x0连续且极限相同,即
lim ⁡ x → x 0 F ( x ) = lim ⁡ x → x 0 G ( x ) = A \begin{aligned} \lim_{x \to x_0}F(x) = \lim_{x \to x_0}G(x) = A \end{aligned} xx0limF(x)=xx0limG(x)=A

f ( x ) f(x) f(x) x 0 x_0 x0的某领域内恒有
F ( x ) ≤ f ( x ) ≤ G ( x ) F(x) \le f(x) \le G(x) F(x)f(x)G(x)


lim ⁡ x → x 0 f ( x ) = A \begin{aligned} \lim_{x \to x_0}f(x) = A \end{aligned} xx0limf(x)=A

二重积分的换元法

∬ x 2 + y 2 ≤ R 2 f ( x , y ) d x d y = ∫ 0 R ∫ 0 2 π f ( r s i n θ , r c o s θ )   r   d r d θ \begin{aligned} &\iint_{x^2+y^2 \le R^2} f(x, y)dxdy \\ = &\int_0^R \int_0^{2\pi} f(rsin\theta, rcos\theta) \ r \ dr d\theta \end{aligned} =x2+y2R2f(x,y)dxdy0R02πf(rsinθ,rcosθ) r drdθ

正态分布概率密度函数的积分

(1) 令 y = x − μ 2 σ \begin{aligned} y = \frac{x - \mu}{\sqrt{2} \sigma} \end{aligned} y=2 σxμ, 得到 I = 1 π ∫ − ∞ ∞ e − y 2 d y \begin{aligned} I = \frac {1}{\sqrt{\pi}} \int _{-\infty} ^{\infty} e ^ {- y^2} dy \end{aligned} I=π 1ey2dy

(2) 令 U = ∫ − ∞ ∞ e − y 2 d y \begin{aligned} U = \int _{-\infty} ^{\infty} e ^ {- y^2} dy \end{aligned} U=ey2dy, 则 I = 1 π U \begin{aligned} I = \frac {1}{\sqrt{\pi}} U \end{aligned} I=π 1U

(3) U = lim ⁡ R → ∞ ∫ − R R e − y 2 d y \begin{aligned} U = \lim_{R \to \infty} \int _{-R} ^{R} e ^ {- y^2} dy \end{aligned} U=RlimRRey2dy

(4) 转换为正方形区域内的二重积分
U 2 = lim ⁡ R → ∞ ∫ − R R e − x 2 d x ∫ − R R e − y 2 d y = lim ⁡ R → ∞ ∫ − R R ∫ − R R e − x 2 − y 2 d x d y = lim ⁡ R → ∞ ∬ − R ≤ x ≤ R , − R ≤ y ≤ R e − x 2 − y 2 d x d y \begin{aligned} U^2 &= \lim_{R \to \infty} \int _{-R} ^{R} e ^ {- x^2} dx \int _{-R} ^{R} e ^ {- y^2} dy \\ &= \lim_{R \to \infty} \int _{-R} ^{R}\int _{-R} ^{R} e ^ {- x^2-y^2} dx dy \\ &= \lim_{R \to \infty} \iint _{-R \le x \le R, -R \le y \le R} e ^ {- x^2-y^2} dx dy \end{aligned} U2=RlimRRex2dxRRey2dy=RlimRRRRex2y2dxdy=RlimRxR,RyRex2y2dxdy

在这里插入图片描述

(5) 内切圆积分
U 1 = lim ⁡ R → ∞ ∬ x 2 + y 2 ≤ R 2 e − x 2 − y 2 d x d y = lim ⁡ R → ∞ ∫ 0 R ∫ 0 2 π e − r 2 r   d r d θ = ∫ 0 2 π d θ × lim ⁡ R → ∞ ∫ 0 R e − r 2 r   d r = 2 π ∫ 0 ∞ e − r 2 r   d r = 2 π ( − 1 2 e − r 2 ∣ 0 ∞ ) = π \begin{aligned} U1 &= \lim_{R \to \infty} \iint _{x^2+y^2 \le R^2} e ^ {- x^2-y^2} dx dy \\ &= \lim_{R \to \infty} \int _{0}^{R} \int_{0}^{2 \pi} e ^ {- r^2} r \ dr d\theta \\ &= \int_{0}^{2 \pi} d\theta \times \lim_{R \to \infty} \int _{0}^{R} e ^ {- r^2} r \ dr \\ &= 2 \pi \int _{0}^{\infty} e ^ {- r^2} r \ dr \\ &= 2 \pi (- \frac{1}{2} e ^ {- r^2} |_0^\infty) \\ &= \pi \end{aligned} U1=Rlimx2+y2R2ex2y2dxdy=Rlim0R02πer2r drdθ=02πdθ×Rlim0Rer2r dr=2π0er2r dr=2π(21er20)=π

(5) 外接圆积分
U 2 = lim ⁡ R → ∞ ∬ x 2 + y 2 ≤ 2 R 2 e − x 2 − y 2 d x d y = lim ⁡ R → ∞ ∫ 0 2 R ∫ 0 2 π e − r 2 r   d r d θ = ∫ 0 2 π d θ × lim ⁡ R → ∞ ∫ 0 2 R e − r 2 r   d r = 2 π ∫ 0 ∞ e − r 2 r   d r = 2 π ( − 1 2 e − r 2 ∣ 0 ∞ ) = π \begin{aligned} U2 &= \lim_{R \to \infty} \iint _{x^2+y^2 \le 2R^2} e ^ {- x^2-y^2} dx dy \\ &= \lim_{R \to \infty} \int _{0}^{\sqrt{2}R} \int_{0}^{2 \pi} e ^ {- r^2} r \ dr d\theta \\ &= \int_{0}^{2 \pi} d\theta \times \lim_{R \to \infty} \int _{0}^{\sqrt{2}R} e ^ {- r^2} r \ dr \\ &= 2 \pi \int _{0}^{\infty} e ^ {- r^2} r \ dr \\ &= 2 \pi (- \frac{1}{2} e ^ {- r^2} |_0^\infty) \\ &= \pi \end{aligned} U2=Rlimx2+y22R2ex2y2dxdy=Rlim02 R02πer2r drdθ=02πdθ×Rlim02 Rer2r dr=2π0er2r dr=2π(21er20)=π

(6) e − x 2 − y 2 e ^ {- x^2-y^2} ex2y2在整个平面上都大于0,因此有
∬ x 2 + y 2 ≤ R 2 e − x 2 − y 2 d x d y < ∬ − R ≤ x ≤ R , − R ≤ y ≤ R e − x 2 − y 2 d x d y < ∬ x 2 + y 2 ≤ 2 R 2 e − x 2 − y 2 d x d y \begin{aligned} &\iint _{x^2+y^2 \le R^2} e ^ {- x^2-y^2} dx dy \\ \lt &\iint _{-R \le x \le R, -R \le y \le R} e ^ {- x^2-y^2} dx dy \\ \lt &\iint _{x^2+y^2 \le 2R^2} e ^ {- x^2-y^2} dx dy \end{aligned} <<x2+y2R2ex2y2dxdyRxR,RyRex2y2dxdyx2+y22R2ex2y2dxdy

夹逼定理可得 U 2 = U 1 = U 2 = π U^2 = U1 = U2 = \pi U2=U1=U2=π
因此 U = π , I = 1 π U = 1 \begin{aligned}U=\sqrt{\pi}, I = \frac {1}{\sqrt{\pi}} U = 1 \end{aligned} U=π ,I=π 1U=1

  • 13
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值