时间序列预测,非季节性ARIMA及季节性SARIMA

Python 3中使用ARIMA进行时间序列预测的指南

在本教程中,我们将提供可靠的时间序列预测。我们将首先介绍和讨论自相关,平稳性和季节性的概念,并继续应用最常用的时间序列预测方法之一,称为ARIMA。

 

介绍

时间序列提供了预测未来价值的机会。 基于以前的价值观,可以使用时间序列来预测经济,天气和能力规划的趋势,其中仅举几例。 时间序列数据的具体属性意味着通常需要专门的统计方法。

在本教程中,我们将针对时间序列产生可靠的预测。 我们将首先介绍和讨论自相关,平稳性和季节性的概念,并继续应用最常用的时间序列预测方法之一,称为ARIMA。

用于建模和预测时间序列未来点的Python中的一种方法被称为SARIMAX ,其代表具有eXogenous回归的季节性自动反馈集成移动平均值 。 在这里,我们将主要关注ARIMA组件,该组件用于适应时间序列数据,以更好地了解和预测时间序列中的未来点。

时间序列预测——ARIMA(差分自回归移动平均模型)

ARIMA(p,d,q)中,AR是"自回归",p为自回归项数;I为差分,d为使之成为平稳序列所做的差分次数(阶数);MA为"滑动平均",q为滑动平均项数,。ACF自相关系数能决定q的取值,PACF偏自相关系数能够决定q的取值。ARIMA原理:非平稳时间序列转化为平稳时间序列然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型

基本解释:

自回归模型(AR)

  • 描述当前值与历史值之间的关系用变量自身的历史时间数据对自身进行预测
  • 自回归模型必须满足平稳性的要求
  • 必须具有自相关性,自相关系数小于0.5不适用
  • p阶自回归过程的公式定义:

                                              

                                       ,y t-i 为前几天的值

PACF,偏自相关函数(决定p值),剔除了中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的干扰之后x(t-k)对x(t)影响的相关程度。

移动平均模型(MA)

  • 移动平均模型关注的是自回归模型中的误差项的累加,移动平均法能有效地消除预测中的随机波动
  • q阶自回归过程的公式定义:

                                              

ACF,自相关函数(决定q值)反映了同一序列在不同时序的取值之间的相关性。x(t)同时还会受到中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的影响而这k-1个随机变量又都和x(t-k)具有相关关系,所 以自相关系数p(k)里实际掺杂了其他变量对x(t)与x(t-k)的影响

                                           

ARIMA(p,d,q)阶数确定:

                           

                                                                                                                       截尾:落在置信区间内(95%的点都符合该规则)

                              

                                                                                             acf和pacf图

平稳性要求:平稳性就是要求经由样本时间序列所得到的拟合曲线在未来的一段期间内仍能顺着现有的形态“惯性”地延续下去

平稳性要求序列的均值和方差不发生明显变化。

    具体分为严平稳与弱平稳:
    严平稳:严平稳表示的分布不随时间的改变而改变。
    如:白噪声(正态),无论怎么取,都是期望为0,方差为1
    弱平稳:期望与相关系数(依赖性)不变
    未来某时刻的t的值Xt就要依赖于它的过去信息,所以需要依赖性

因为实际生活中我们拿到的数据基本都是弱平稳数据,为了保证ARIMA模型的要求,我们需要对数据进行差分,以求数据变的平稳。

模型评估:


AIC:赤池信息准则(AkaikeInformation Criterion,AIC)
                                                         ???=2?−2ln(?)
BIC:贝叶斯信息准则(Bayesian Information Criterion,BIC)
                                                         ???=????−2ln(?)
                                        k为模型参数个数,n为样本数量,L为似然函数

 

模型残差检验:

  • ARIMA模型的残差是否是平均值为0且方差为常数的正态分布
  • QQ图:线性即正态分布

先决条件

本指南将介绍如何在本地桌面或远程服务器上进行时间序列分析。 使用大型数据集可能是内存密集型的,所以在这两种情况下,计算机将至少需要2GB的内存来执行本指南中的一些计算。

要充分利用本教程,熟悉时间序列和统计信息可能会有所帮助。

对于本教程,我们将使用Jupyter Notebook来处理数据。 如果您还没有,您应该遵循我们的教程安装和设置Jupyter Notebook for Python 3 。

第1步 - 安装软件包

为了建立我们的时间序列预测环境,我们先进入本地编程环境或基于服务器的编程环境:

cd environments
. my_env/bin/activate

从这里,我们为我们的项目创建一个新的目录。 我们称之为ARIMA ,然后进入目录。 如果您将项目称为不同名称,请务必在整个指南中将您的名称替换为ARIMA

mkdir ARIMA
cd ARIMA

本教程将需要warnings , itertools , itertools , numpy , matplotlibstatsmodels库。 warningsitertools库包含在标准Python库集中,因此您不需要安装它们。

像其他Python包一样,我们可以用pip安装这些要求。 
我们现在可以安装pandas , statsmodels和数据绘图包matplotlib 。 它们的依赖也将被安装:

pip install pandas numpy statsmodels matplotlib

在这一点上,我们现在设置为开始使用已安装的软件包。

第2步 - 导入包并加载数据

要开始使用我们的数据,我们将启动Jupyter Notebook:

jupyter notebook

要创建新的笔记本文件,请从右上角的下拉菜单中选择新建 > Python 3 :

创建一个新的Python 3笔记本

这将打开一个笔记本。

最好的做法是,从笔记本电脑的顶部导入需要的库:

import warnings
import itertools
import pandas as pd
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')

我们还为我们的地块定义了一个matplotlib风格 。

我们将使用一个名为“来自美国夏威夷Mauna Loa天文台的连续空气样本的大气二氧化碳”的数据集,该数据集从1958年3月至2001年12月期间收集了二氧化碳样本。我们可以提供如下数据:

data = sm.datasets.co2.load_pandas()
y = data.data

让我们稍后再进行一些数据处理。 每周数据可能很棘手,因为它是一个很短的时间,所以让我们使用每月平均值。 我们将使用resample函数进行转换。 为了简单起见,我们还可以使用fillna()函数来确保我们的时间序列中没有缺少值。

# The 'MS' string groups the data in buckets by start of the month
y = y['co2'].resample('MS').mean()

# The term bfill means that we use the val
  • 106
    点赞
  • 678
    收藏
    觉得还不错? 一键收藏
  • 22
    评论
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值