ARMA、ARIMA和SARIMA

本文介绍了自回归模型(AR)、移动平均模型(MA)和它们的结合体ARMA模型,以及ARIMA模型的参数、特例和建模步骤。重点讨论了ARIMA中p、q阶数的确定方法,包括自相关与偏自相关图的分析。此外,还提到了针对周期性时间序列的SARIMA模型及其应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ARMA、ARIMA和SARIMA

1 背景知识

1.1 自回归模型(AR)

描述当前值与历史值之间的关系,用变量自身的历史时间数据对自身进行预测,自回归模型必须满足平稳性
在这里插入图片描述

  • 自回归(AR),就是指当前值只与历史值有关,用自己预测自己
  • p阶自回归,指当前值与前p个值有关
  • 求常数u与自回归系数ri
  • 自回归模型的限制
    (1)自回归模型是用自身的数据来进行预测,即建模使用的数据与预测使用的数据是同一组数据;
    (2)必须具有平稳性;
    (3)必须具有自相关性,如果自相关系数(φi)小于0.5,则不宜采用;
    (4)自回归只适用于预测与自身前期相关的现象。

1.2 移动平均模型(MA)

移动平均模型关注的是自回归模型中的误差项的累加,移动平均法能有效地消除预测中的随机波动
在这里插入图片描述

  • q阶自回归,指当前值与前q个误差有关
  • 求常数u与系数θi

1.3 自回归移动平均模型(ARMA)

自回归与移动平均的结合
在这里插入图片描述

  • p与q分别为自回归模型与移动平均模型的阶数,需要人为定义
  • γi与θi分别是两个模型的相关系数,需要求解
  • 如果原始数据不满足平稳性要求而进行了差分,则为差分自相关移动平均模型(ARIMA),将差分后所得的新数据带入ARMA公式中即可

1.4 判断时序数据是否稳定的方法

  • 严谨的定义: 一个时间序列的随机变量是稳定的,当且仅当它的所有统计特征都是独立于时间
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值