ARMA、ARIMA和SARIMA

本文介绍了自回归模型(AR)、移动平均模型(MA)和它们的结合体ARMA模型,以及ARIMA模型的参数、特例和建模步骤。重点讨论了ARIMA中p、q阶数的确定方法,包括自相关与偏自相关图的分析。此外,还提到了针对周期性时间序列的SARIMA模型及其应用。
摘要由CSDN通过智能技术生成

ARMA、ARIMA和SARIMA

1 背景知识

1.1 自回归模型(AR)

描述当前值与历史值之间的关系,用变量自身的历史时间数据对自身进行预测,自回归模型必须满足平稳性
在这里插入图片描述

  • 自回归(AR),就是指当前值只与历史值有关,用自己预测自己
  • p阶自回归,指当前值与前p个值有关
  • 求常数u与自回归系数ri
  • 自回归模型的限制
    (1)自回归模型是用自身的数据来进行预测,即建模使用的数据与预测使用的数据是同一组数据;
    (2)必须具有平稳性;
    (3)必须具有自相关性,如果自相关系数(φi)小于0.5,则不宜采用;
    (4)自回归只适用于预测与自身前期相关的现象。

1.2 移动平均模型(MA)

移动平均模型关注的是自回归模型中的误差项的累加,移动平均法能有效地消除预测中的随机波动
在这里插入图片描述

  • q阶自回归,指当前值与前q个误差有关
  • 求常数u与系数θi

1.3 自回归移动平均模型(ARMA)

自回归与移动平均的结合
在这里插入图片描述

  • p与q分别为自回归模型与移动平均模型的阶数,需要人为定义
  • γi与θi分别是两个模型的相关系数,需要求解
  • 如果原始数据不满足平稳性要求而进行了差分,则为差分自相关移动平均模型(ARIMA),将差分后所得的新数据带入ARMA公式中即可

1.4 判断时序数据是否稳定的方法

  • 严谨的定义: 一个时间序列的随机变量是稳定的,当且仅当它的所有统计特征都是独立于时间
### SARIMA 模型在 Netflix 时间序列预测中的应用 时间序列分析对于像 Netflix 这样的公司至关重要,因为这有助于理解用户行为模式并优化推荐系统服务性能。SARIMA 模型通过引入季节性成分扩展了传统的 ARIMA 模型[^1]。 #### 定义问题 Netflix 需要处理具有明显周期性的数据集,例如用户的观看习惯可能每周或每月呈现规律变化。为了捕捉这些特征,可以采用带有适当参数配置的 SARIMA 模型来建模这种周期性趋势组合的时间序列。 #### 数据预处理 在构建任何预测模型之前,必须先清理准备数据。具体操作包括缺失值填充、异常检测以及转换成平稳序列等步骤。对于非平稳的数据,可以通过差分方法使其变得平稳以便更好地拟合 SARIMA 模型。 ```python import pandas as pd from statsmodels.tsa.statespace.sarimax import SARIMAX # 假设 df 是包含日期索引 'date' 目标变量 'views' 的 DataFrame df['views_diff'] = df['views'].diff().dropna() ``` #### 构建 SARIMA 模型 一旦完成了必要的前期工作之后就可以开始建立 SARIMA(p,d,q)(P,D,Q)m 模型,在这里 p, d, q 表示自回归项数、差分数阶次平滑移动平均项数;而 P, D, Q 则对应于季节部分相同的含义,并且 m 代表季节长度(如7天表示一周)。选择合适的超参数非常重要,通常会利用 AIC 或 BIC 准则来进行自动搜索最佳设置。 ```python model = SARIMAX(df['views'], order=(p, d, q), seasonal_order=(P, D, Q, m)) results = model.fit() print(results.summary()) ``` #### 结果评估与改进 完成训练后应当对所得结果进行全面检验,确保其具备良好的泛化能力。常用的评价指标有均方误差(MSE)、均绝对百分比误差(MAPE),以及其他特定领域内的度量标准[^2]。如果发现现有方案不够理想,则应考虑调整模型结构或是尝试其他算法直至获得满意的效果为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值