《向量数据库指南》—— LangChain + GPTCache =兼具低成本与高性能的 LLM

本文介绍了如何通过集成GPTCache与LangChain来优化大型语言模型(LLM)的使用,降低LLM服务成本并提高性能。GPTCache是一个语义缓存层,能存储LLM响应,减少重复请求,同时提供向量近似搜索以提高缓存命中率。LangChain利用字符串匹配实现缓存,但缓存利用率有限。通过GPTCache的向量表示和相似性评估,可以显著提升缓存效果。
摘要由CSDN通过智能技术生成

目录

GPTCache 的功能和原理

LangChain 缓存分析

03.

集成 GPTCache


上周我们邀请到了 LangChain 联合创始人 Harrison Chase 分享【如何用 LangChain 和 Milvus 进行检索】,Harrison 提到,多跳问题会给语义检索带来挑战,并提出可以试用 AI 代理工具解决。不过,频繁调用 LLM 会导致出现使用成本高昂的问题。


 

 

对此,Zilliz 软件工程师 Filip Haltmayer 指出,将 GPTCache 与 LangChain 集成,可以有效解决这一问题。


GPTCache 是一个用于存储 LLM 响应的语义缓存层。它可以为 LLM 相关应用构建相似语义缓存,当相似的问题请求多次出现时,可以直接从缓存中获取,在减少请求响应时间的同时也降低了 LLM 的使用成本。


本文为解码 LangChain 系列,将从 GPTCache 的适用场景出发,厘清 GPTCache 和 LangChain 集成的原理,并附

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大禹智库

大禹智库——河南第一民间智库

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值