![]()
摘要

选址作为商业决策和城市基础设施规划的核心环节,对实体店铺、城市基础设施能否发挥预期效用具有重要作用。现有的选址推荐系统数据服务编排较为固定,无法对不同用户需求系统做出及时调整,应用场景受限,人机交互的系统灵活性和可扩展性差。最近,以GPT-4为代表的大语言模型(Large Language Models,LLMs)展现出了强大的意图理解、任务编排、代码生成和工具使用能力,能够完成传统推荐模型难以兼顾的任务,为重塑推荐流程,实现一体化的推荐服务提供了新的机遇。然而,一方面选址推荐在兼具传统推荐共有的挑战,另一面,由于其基于空间数据,具有独特的挑战。
在这一背景下,本文提出了大语言模型驱动的选址推荐系统。首先,我们拓
本文提出了一种大语言模型驱动的选址推荐系统,结合协同过滤和空间预训练模型,解决传统系统在空间任务上的局限。通过地理编码等工具提升模型空间感知,实现场景推荐和智能规划,提升交互体验。实验表明,该系统在选址和场景推荐上表现良好,具有广阔的应用前景。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



