matplotlib和seaborn中的颜色图(colormap)和调色板(color palette)

颜色图或调色板是指一系列的有规律的颜色的集合,可以区分不同类型的离散数据或不同值的连续数据。一般在matplotlib中称为colormap(在绘图函数中的关键字为cmap),在seaborn中一般称为color palette(在绘图函数中的关键字为palette)。由于seaborn是基于matplotlib开发的,因此matplotlib中的各类colormap一般seaborn均支持。
为统一起见,下文统称为palette或调色板。

调色板一般分为三类:

  • 离散型(qualitative):用来表示没有顺序关系的不同数据
  • 连续型(sequential):用来表示有序关系的连续数据
  • 连续双边型(diverging):类似连续型,但数据的分布会跨越一个中间点(一般为0),在表示数据的特征时用来强调值在两端的数据,弱化值在中间的数据

下文分别列出各类常用的调色板若干。

import seaborn as sns

离散型

seaborn库自带的调色板

sns.color_palette()

在这里插入图片描述
seaborn除了默认的调色板外,自带了"deep", “muted”, “pastel”, “bright”, “dark”, "colorblind"等6种调色板

sns.color_palette("deep")

在这里插入图片描述

pallettes = ["deep", "muted", "pastel", "bright", "dark", "colorblind"]
data = np.array([sns.color_palette(pat) for pat in pallettes])
fig = plt.figure(figsize=(9,16))
ax = fig.add_subplot(111)
ax.imshow(data)
for i, pat in enumerate(pallettes):
    ax.text(-0.6, i, pat, ha="right")
plt.axis("off");

在这里插入图片描述

# 示例
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

col1 = ["A"]*5 + ["B"]*5
col2 = list("abcde")*2
val = np.random.rand(10)
df = pd.DataFrame({"col1":col1, "col2":col2, "val":val})
df

fig = plt.figure(figsize=(8,8))
fig.subplots_adjust(wspace=0.1, hspace=0.25)
for i, palette in enumerate(["deep", "muted", "bright", "dark"]):
    ax = fig.add_subplot(2, 2, i+1)
    sns.barplot(x="col2", y="val", hue="col1", data=df, ax=ax, palette=palette)
    ax.set_title(palette)

在这里插入图片描述

自定义调色板

可利用hls(色相、亮度、饱和度)颜色空间自定义任意数量颜色的调色板

sns.color_palette("hls", 8)

在这里插入图片描述

sns.color_palette("hls", 16)

在这里插入图片描述

sns.color_palette("husl", 8) # husl相比hls,基于人的视觉特点对颜色进行了修正

其它调色板

主要是matplotlib库自带的调色板,有’Pastel1’, ‘Pastel2’, ‘Paired’, ‘Accent’,‘Dark2’, ‘Set1’, ‘Set2’, ‘Set3’, ‘tab10’, ‘tab20’, ‘tab20b’, 'tab20c’等

sns.color_palette("Set2")

在这里插入图片描述

sns.color_palette("tab10")

连续型

主要有"rocket", “mako”, “flare"和"crest”,其中"rocket", “mako"适合较大的数值跨度;名称后面加”_r"表示翻转。
同时也支持matploblib自带的"magma"、"viridis"等。
也可用sns.cubehelix_palette函数自定义。

fig = plt.figure(figsize=(24,8))
fig.subplots_adjust(wspace=0.1, hspace=0.25)
palettes = ["rocket", "mako", "flare", "crest", "magma", "viridis"]
palettes += [pat+"_r" for pat in palettes] 
data = np.random.rand(10,10)
for i, palette in enumerate(palettes):
    ax = fig.add_subplot(2, 6, i+1)
    sns.heatmap(data, cmap=palette)
    ax.set_title(palette)

在这里插入图片描述

连续双边型

主要有"vlag"和"icefire";以及matplotlib自带的"Spectral"和"coolwarm";名称后面加"_r"表示翻转。也可用sns.diverging_palette函数自定义

fig = plt.figure(figsize=(16,8))
fig.subplots_adjust(wspace=0.2, hspace=0.25)
palettes = ["vlag", "icefire", "Spectral", "coolwarm"]
palettes += [pat+"_r" for pat in palettes] 
data = np.random.rand(10,10)*2-1
for i, palette in enumerate(palettes):
    ax = fig.add_subplot(2, 4, i+1)
    sns.heatmap(data, cmap=palette)
    ax.set_title(palette)

在这里插入图片描述

参考

Choosing Colormaps in Matplotlib

Choosing color palettes

### seaborn colormap 颜色样式 Seaborn 提供多种调色板颜色,这些颜色有助于绘制数据值[^1]。通过 `palette` 参数可以选择不同的调色板名称、列表或字典来定义不同层次的颜色[^2]。 下面是一个简单的 Python 示例,展示如何使用 Seaborn 的几种常见颜色样式: ```python import seaborn as sns import matplotlib.pyplot as plt # 设置风格背景 sns.set_style("whitegrid") # 加载示例数据集 tips = sns.load_dataset("tips") # 使用不同的调色板 plt.figure(figsize=(10, 8)) # 绘制带有 "deep" 调色板的小提琴 plt.subplot(2, 2, 1) sns.violinplot(x="day", y="total_bill", data=tips, palette='deep') plt.title('Deep Palette') # 绘制带有 "muted" 调色板的小提琴 plt.subplot(2, 2, 2) sns.violinplot(x="day", y="total_bill", data=tips, palette='muted') plt.title('Muted Palette') # 绘制带有 "pastel" 调色板的小提琴 plt.subplot(2, 2, 3) sns.violinplot(x="day", y="total_bill", data=tips, palette='pastel') plt.title('Pastel Palette') # 绘制带有自定义颜色列表的小提琴 plt.subplot(2, 2, 4) custom_colors = ["#FF9999", "#66B2FF", "#99FF99", "#FFCC99"] sns.violinplot(x="day", y="total_bill", data=tips, palette=custom_colors) plt.title('Custom Colors') plt.tight_layout() plt.show() ``` 这段代码展示了四种不同类型的颜色方案:"deep"、"muted"、"pastel" 自定义颜色列表。每种颜色方案都应用于小提琴上显示星期几与总账单金额之间的关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值