B树,r树,k-d树,bvh(bound volumn heuristic)树, octtree ,quadtree(待更)

本文对比分析了多种空间数据结构,包括B树、R树、KD树、Oct树、BVH树等,探讨了它们在不同场景下的适用性和效率,如静态场景、动态物体管理和光线追踪等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引入b树是为了方便理解r树;
kd树,oct树,bvh树,oct树,quad树都是用于空间或区域(region)的管理。下面讲述按我的理解的大概的划分


b树,一种特殊的多叉树,善于描述一维的数据
r树是b树向多维的一种拓展,也是属于多叉树的一种。

多叉树相对于二叉树有一个问题就是查找时间过长,在每个中间节点上需要消耗较多的时间。所以有对b树和r树的改进方式是尽量减少树的阶数,通常取最小阶数为3,因为内部节点可以有2到3个子节点,所以3阶b树又称为2-3b树

quadtree和oct树,四叉树和八叉树是类似的,前者适用于2d,后者适用于3d,对场景从整体到细的均匀拆分,查找效率可能会不高,但是增删操作很快

k-d树,(介绍2),本质是一种二叉树,因为是基于spatial subdivision,适合划分无交叉或重叠的场景,因为构造过程时间比较长,每次切分一个维度后,就可能需要对所有切分后数据的继续做一个排序操作,为了保持查找的高效性,k-d树更适合对静态场景进行划分和查找(主要原因是切分的轴向在生成树的时候就被固定了)。k-d树在构建时需要尽可能让左右子树平衡,以方便后面的查询操作。增删操作比较耗时。最好的应用就是用于划分空间中的点集,和光线追踪中对静态的单个物体切分用于光线求交。

bvh树(如果连接不可访问点击这里,也是一种二叉树,可以用于动态物体的添加(中文版的bvh树,链接中介绍的SPLIT_MIDDLE和SPLIT_EQUAL_COUNT因为是基于空间来划分的,只能算是启发式的kd树,划分是需要涉及到图元的拆分;而SPLIT_SAH才算是真正意义上的bvh树,因为SPLIT_SAH才算是真正意义上与空间(维度,spatial subdivision)不相关的,而是与场景中对象相关(object subdivision)),增删操作比较耗时,能很好应对交叉的情况。也可以用于对场景中静态或动态的物体的管理。

oct树和k-d树对比,两者都适用于点集管理,相对于oct树。k-d树是二叉树,octtree是八叉树,kd树相对oct树更显精简,平均查找相对来说会更高些。


r树和k-d树对比
r树相对于k-d树,r树涉及到压缩和分裂等操作,相对会操作复杂点,r树是一种平衡树,查询可能比较快,但是当阶数比较高时,查询就会效率降低,适合从整体中快速定位查找到需要的满足要求的一个范围内的东西,。
k-d树是非平衡树(不能强制转换成平衡二叉树),但是非常适合与确定物体相邻的最近的东西的查询,因为构造过程比较费时,所以相对来说适合静态的查询,并且因为无法调节平衡性,所以针对不同场景查询效率相对于其他的可能不是最优的,但是在查询已知节点的临近节点的情况时,效率是最高的,另外k-d树应对交叠的状况时效率也会变得低下。

r树和bvh树对比 1111
r树和bvh树主要用于二维或三维甚至多维的图元的管理。
r树是多叉平衡树,当为2阶时其实就是bvh树,bvh树可以是平衡二叉树。构建过程都可以是从整体到细节划分,或从细节到整体划分,或者递增的方式组装。

bvh和k-d树对比,两者适合的场景不同,前者适合图元(可以有交叉或重叠,可以是动态或静态)管理;后者适合点集管理或静态图元查找。如果将kd树应用于图元,就会涉及到繁杂的图元的拆分。bvh可以是平衡二叉树,而kd树只能是普通二叉树。另外一点就是bvh相对于kd树是灵活的,因为没有固定的轴向的切分,所以相对来说对动态物体进行管理更有优势。kd树相对于bvh树,临近查询相对来说更友好,因为bvh中的相邻的物体在子节点中可能会更分散些(与bvh构造的方法关系也很大)。
(网上查看到pbrt中用了kb树来对场景划分进行光线追踪求交

数据结构都是死的,可能不一定适合你当前的应用环境,主要还是了解这些后构造更适合当前环境和应用以及目的的数据结构。

另外一篇类似的介绍

一种对R树的高效应用

<think>嗯,用户想了解BVH的概念、实现,以及它在三维渲染和算法中的应用。首先,我需要回忆一下BVH的基本定义和结构。根据之前的引用,引用[4]提到BVH是层次包围体结构,用于加速碰撞检测和光线追踪。那它的核心应该是通过将物体组织成层次化的包围体,减少不必要的相交测试。 接下来,用户可能想知道BVH的具体结构。记得引用[2]中提到了BSP的节点结构,包含前后指针,但BVH的结构可能不同。每个BVH节点应该包含包围盒和左右子节点,或者叶子节点存储物体列表。需要区分内部节点和叶子节点的结构。 然后是构建过程。用户可能关心如何递归地划分物体,选择分割轴和分割点。比如,按物体中心坐标的中位数分割,或者SAH(表面积启发式)方法。引用[3]提到四叉的划分方式,但BVH通常是二叉,分割策略不同。 在三维渲染中的应用,引用[1]提到八叉用于视域剔除和光线追踪加速,BVH也有类似用途,但结构不同。需要比较BVH和八叉的优缺点,比如内存和构建成本。引用[1]指出八叉内存需求高,构建成本大,而BVH可能灵活。 算法方面,光线与BVH的相交测试需要遍历结构,优先测试靠近光线的子节点。这可能涉及堆栈或队列的使用,以非递归方式实现遍历。 用户可能还希望了解BVH的优缺点,比如高效的空间划分、动态新困难等。需要结合引用中的信息,比如引用[4]的优点和缺点,但要根据BVH的特点调整。 可能的相关问题包括BVH与其他空间数据结构的比较,优化方法,实际应用案例等。要确保问题覆盖用户可能感兴趣的扩展方向,比如在游戏引擎中的使用,或者与BSP的区别。 最后,检查是否需要代码示例。用户提到了Python的快速排序代码,但BVH的实现可能复杂,可以提供一个简化的C++结构示例,如节点类和构建函数,帮助理解数据结构。</think>### BVH(层次包围体结构)详解 #### 一、基本概念 BVHBounding Volume Hierarchy Tree)是一种用于加速三维空间物体相交测试的层次结构。其核心思想是将三维物体组织成状结构,**每个节点包含一个包围体(如AABB轴对齐包围盒、球体等)**,父节点的包围体完全包含子节点的包围体。这种结构可大幅减少光线追踪、碰撞检测等算法中需要测试的物体数量[^4]。 #### 二、数据结构实现 ##### 1. 节点结构(C++伪代码) ```cpp struct BVHNode { AABB bounding_box; // 包围盒 std::vector<Object*> objs; // 叶子节点存储的物体 BVHNode* left; // 左子节点 BVHNode* right; // 右子节点 bool is_leaf; // 是否为叶子节点 }; ``` ##### 2. 构建流程 1. **初始化**:将场景所有物体放入根节点 2. **递归分割**: - 若当前节点物体数超过阈值(如4个) - 选择分割轴(X/Y/Z轴,通常选择方差最大的轴) - 按物体中心坐标的中位数分割(或使用SAH启发式算法) 3. **生成包围盒**:为每个节点计算包围所有子物体/子节点的包围盒 #### 三、三维渲染中的核心应用 1. **光线追踪加速** 遍历BVH时,**先检测光线与节点包围盒的相交性**,若不相交则跳过该子。典型优化策略: ```python def ray_intersect_bvh(ray, node): if not ray_hit_aabb(ray, node.bounding_box): return None if node.is_leaf: return test_objects(ray, node.objs) left = ray_intersect_bvh(ray, node.left) right = ray_intersect_bvh(ray, node.right) return closest_hit(left, right) ``` 2. **碰撞检测优化** 通过层次化包围盒快速排除不相交物体对: $$ \text{检测次数} = O(\log N) \quad \text{(传统方法为} O(N^2)\text{)} $$ 3. **视域剔除** 结合摄像机视锥体与节点包围盒的相交测试,快速排除不可见物体[^1]。 #### 四、算法特性对比 | 特性 | BVH | 八叉[^1] | BSP[^2] | |---------------------|----------------|----------------|----------------| | **构建速度** | 较快(O(N log N)) | 较慢 | 最慢 | | **动态场景支持** | 支持局部新 | 困难 | 困难 | | **内存占用** | 中等 | 较高 | 较高 | | **适合场景类型** | 任意分布物体 | 均匀分布空间 | 室内场景 | #### 五、优缺点分析 **优点:** - **高效空间划分**:相比八叉的均匀分割,BVH能根据物体分布自适应划分 - **支持动态新**:局部节点可重建而不影响整结构 - **兼容复杂几何**:对非均匀分布物体表现优[^4] **缺点:** - **分割质量依赖算法**:SAH(Surface Area Heuristic)等算法实现复杂 - **重叠包围盒问题**:相邻节点包围盒可能存在重叠,降低剔除效率 - **构建耗时**:高质量BVH的构建时间可能达到场景加载时间的30%[^4] #### 六、现代优化技术 1. **SAH(表面积启发式)** 选择使以下函数最小的分割方案: $$ C(p) = C_t + \frac{S_L}{S_P}N_L + \frac{S_R}{S_P}N_R $$ 其中$S$为包围盒表面积,$N$为物体数量,$C_t$为遍历开销 2. **并行构建** 使用任务分片(Task Sharding)技术加速构建: ```cpp parallel_for(each node in current_level) { split_node(node); } ``` 3. **压缩存储** 使用32字节对齐的紧凑结构存储节点,提升缓存命中率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值