TVS一文精通,原理、参数、选型、功率计算

一、介绍

        TVS(Transient Voltage Suppressor)二极管,又称为瞬态抑制二极管,是普遍使用的一种新型高效电路保护器件,它具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力。当它的两端经受瞬间的高能量冲击时,TVS能以极高的速度把两端间的阻抗值由高阻抗变为低阻抗,以吸收一个瞬间大电流,把它的两端电压箝制在一个预定的数值上,从而保护后面的电路元件不受瞬态高压尖峰脉冲的冲击。主要用在具有静电和电压尖峰的电路中起保护作用。

二、TVS工作过程、参数

        上图是TVS的工作图形,首先解释几个TVS相关的参数:

        1、VRWM(最大反向工作电压):在这个电压下,TVS的功耗很小,使用时要使被保护电路的工作电压低于此值,以便TVS接入电路后不影响电路工作。

        2、VBR(反向击穿电压):这是TVS管通过电流IR时的电压,这是TVS管导通的标志电压,从此点开始TVS进入雪崩击穿。

        3、VCL(最大钳位电压):指当TVS流过IPP电流时的电压,是TVS管将电压尖峰钳制到的电位值。比如来了1000V、2000V的电压尖峰,都会被TVS钳制到VCL电平。VCL要小于被保护电路的最大耐压值,比如被保护芯片耐压30V,那么就要选VCL小于30V的TVS。

        4、IPP(最大反向脉冲峰值电流):是TVS允许通过的最大脉冲峰值电流,超过此值,TVS可能损坏。

        5、TVS管分为单极性和双极性,若TVS管有可能承受来自两个方向的尖峰脉冲电压(浪涌电压)冲击时,应当选用双极性的,否则选用单极性。

        6、CJ(结电容):电容量C是由TVS雪崩结截面决定的,这是在特定的1MHz频率下测得的。C的大小与TVS管的电流承受能力成正比,C太大将使信号衰减。因此,C是数据接口电路选用TVS管的重要参数。对于信号频率越高的回路,TVS的电容对电路的干扰越大,形成噪声或衰减信号强度也大。高频回路一般选择电容应尽量小(如LCTVS、低电容TVS,电容不大于3 pF),而对电容要求不高的回路,电容的容量选择可高于40 pF。

结电容大小与VBR有关,VBR值越小CJ越大。比如选择VBR=3.6V时,Cj能到几十nF,对于信号影响会很大。

三、选型

        1、首先确定电路是否存在两个方向的电压尖峰,如果有就选双极性TVS,如果没有就选单极性TVS。

        2、确定电路的正常工作电压、最大耐压值,凭此来确定TVS的VRWM、VCL。

        3、大概评估电压尖峰的频率、幅值,从而确定TVS的功率,从而确定其封装。

        比如一个DCDC电路,正常工作电压24V,电源芯片耐压值为40V,电压尖峰能量并不大。那么TVS就要选单极性,VRWM大于24V,VCL小于40V的TVS,电压尖峰能量不是很大,封装可以选SOD123的。

上图中的SMF24A比较合适。

其VRWM=24V,VCL=38.9V,当电压正常24V时TVS不工作。当有电压尖峰来时,TVS可以将其钳制在38.9V,此时流过TVS的电流最大5.14A,TVS上功率38.9V*5.14A=200W,一般的电压尖峰都不会有这么大能量,所以TVS就能防止超过38.9V的电压过去损坏后级芯片。当然当尖峰能量超过200W,TVS就会烧坏。

根据上面TVS的伏安特性曲线,就能知道TVS的工作过程:

当输入电压等于VBR,TVS开始动作,此时流过TVS的电流为IR。

当输入电压大于VBR,流过TVS的电流就会像上面的曲线一样迅速增加,直到电流到达Ipp,如果这个过程中电压尖峰电流值供应不了TVS,那么电压就不会再继续增加。

前级来了一个大电压或尖峰,经过TVS时必须要供给TVS电流,TVS才会让电压升高。在升高的过程中如果前级供应不了越来越大的电流,那么电压就不会升高了,TVS就成功钳制了电压。如果前级还能供应电流,那么TVS上的功率越来越大就会烧掉,TVS烧掉后一般是对地短路,能以牺牲自己的方式防止高电压到后级。

四、功率计算

下面以SMBJ6.5CA数据手册来讲解

SMBJ6.5CA数据手册链接

TVS的功率我们需要关注PPPM、PM(AV)、热阻参数,如下表

峰值功率PPPM=VCL*Ipp,跟封装有关

实际应用还需要关注最大脉冲功率,尖峰电压持续时间不同,TVS能耐受的最大功率也不同。比如下图,如果尖峰电压持续时间10us,TVS能耐受5kw。

峰值功率Pppm的值与击穿电流的脉冲宽度td有关,与频率无关。

厂家一般使用10/1000μs波形来测试TVS的脉冲功率、反应时间。

10/1000us波形代表持续时间1000us,上升沿时间为10us

当然也有使用8/20us波形的,8/20us代表持续时间20us,上升沿时间为8us

手册上会给出10/1000us波形下,IPPM的波形,就能看出TVS的动作过程。

以上都是考虑的电功率,没有考虑热功率。如果持续测试,即使任何一次电功率都没有超过TVS极限,但是热量堆积仍然会损坏TVS。

TVS的散热能力跟封装热阻有关,上表的PM(AV)代表持续稳定功率值。该值跟环境温度也有关系。

比如环境温度50度时,TVS能持续消耗5W。

要使用R复现这篇孟德尔随机化(Mendelian Randomization, MR)分析文章中的结果,可以按照以下步骤进行: ### 1. 安装和加载必要的包 首先,你需要安装并加载一些必要的R包,这些包用于处理GWAS数据和执行MR分析。 ```R install.packages("TwoSampleMR") library(TwoSampleMR) ``` ### 2. 下载和准备GWAS数据 你需要从论文中提到的数据源下载GWAS汇总统计数据,并将其准备好用于MR分析。这里以骨密度(BMD)和骨折为例。 #### 2.1 下载GWAS数据 你可以从以下网站下载GWAS数据: - **骨密度(BMD)**:[GEFOS](http://www.gefos.org/) -epidemiology/) - **精神疾病(MDs)**:[GWAS Catalog](https://www.ebi.ac.uk/gwas/downloads/summary-statistics) 假设你已经下载了这些数据并保存为文件。 #### 2.2 准备GWAS数据 将下载的GWAS数据读入R,并进行预处理。 ```R # 读取GWAS数据 bmd_data <- read.table("path/to/bmd_data.txt", header = TRUE) fracture_data <- read.table("path/to/fracture_data.txt", header = TRUE) schizophrenia_data <- read.table("path/to/schizophrenia_data.txt", header = TRUE) # 进行质量控制 bmd_data <- clump_data(bmd_data, p1 = 5e-8, p2 = 5e-8, clump_kb = 10000, clump_r2 = 0.001) fracture_data <- clump_data(fracture_data, p1 = 5e-8, p2 = 5e-8, clump_kb = 10000, clump_r2 = 0.001) schizophrenia_data <- clump_data(schizophrenia_data, p1 = 5e-8, p2 = 5e-8, clump_kb = 10000, clump_r2 = 0.001) ``` ### 3. 执行两样本MR分析 使用`TwoSampleMR`包中的函数来执行MR分析。 ```R # 获取遗传工具变量 exposure_data <- extract_instruments(schizophrenia_data) # 获取结局数据 outcome_bmd <- harmonise_data(exposure_data, bmd_data) outcome_fracture <- harmonise_data(exposure_data, fracture_data) # 执行MR分析 mr_result_bmd <- mr(outcome_bmd, method_list = c("ivw", "mr_egger_regression", "weighted_median")) mr_result_fracture <- mr(outcome_fracture, method_list = c("ivw", "mr_egger_regression", "weighted_median")) # 查看结果 print(mr_result_bmd) print(mr_result_fracture) ``` ### 4. 结果解释 输出的结果会显示不同方法下的MR估计值及其显著性水平。你可以通过查看`mr_result_bmd`和`mr_result_fracture`来解释结果。 ### 5. 敏感性分析 为了验证结果的稳健性,可以进行敏感性分析。 ```R # 检查异质性和多效性 heterogeneity_test <- mr_heterogeneity(outcome_bmd) pleiotropy_test <- mr_pleiotropy Egger(outcome_bmd) # 查看测试结果 print(heterogeneity_test) print(pleiotropy_test) ``` ### 6. 可视化结果 最后,可以使用`forest_plot`函数绘制森林图来可视化结果。 ```R # 绘制森林图 forest_plot(mr_result_bmd, method_list = c("ivw", "mr_egger_regression", "weighted_median")) forest_plot(mr_result_fracture, method_list = c("ivw", "mr_egger_regression", "weighted_median")) ``` ### 总结 以上步骤可以帮助你在R中复现这篇文章中的孟德尔随机化分析。确保你正确地下载和处理了所有所需的GWAS数据,并且在每一步都进行了适当的质量控制和数据校正。如果有任何问题或需要进一步的帮助,请随时提问。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qlexcel

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值