逐行分析Transformer的程序代码,最后免费附上该代码!!

在这里插入图片描述

1. 代码详细解释

1. 第一段代码

这段代码首先定义了一些参数,包括编码器个数、输入维度、句子长度、词嵌入维度等。然后它保存了这些超参数到指定路径。接着,它加载训练和验证数据集,并创建了对应的数据加载器。之后,它定义了一个模型,使用了一个叫做DSCTransformer的模型,以及交叉熵损失函数和Adam 优化器。最后,它将模型移动到可用的设备(如果有 GPU 则移动到 GPU,否则移动到 CPU)。

def train(model_save_path, train_result_path, val_result_path, hp_save_path, epochs=100):
    #定义参数
    N = 4  # 编码器个数
    input_dim = 1024  # 输入维度
    seq_len = 16  # 句子长度
    d_model = 64  # 词嵌入维度
    d_ff = 256  # 全连接层维度
    head = 4  # 注意力头数
    dropout = 0.1  # Dropout 比率
    lr = 3E-5  # 学习率
    batch_size = 64  # 批大小

    # 保存超参数
    hyper_parameters = {
   
   '任务编码器堆叠数: ': '{}'.format(N),
                        '全连接层维度: ': '{}'.format(d_ff),
                        '任务注意力头数: ': '{}'.format(head),
                        'dropout: ': '{}'.format(dropout),
                        '学习率: ': '{}'.format(lr),
                        'batch_size: ': '{}'.format(batch_size)}
    fs = open(hp_save_path, 'w')  # 打开文件以保存超参数
    fs.write(str(hyper_parameters))  # 将超参数写入文件
    fs.close()  # 关闭文件

    # 加载数据
    train_path = r'.\data\train\train.csv'  # 训练数据路径
    val_path = r'.\data\val\val.csv'  # 验证数据路径
    train_dataset = MyDataset(train_path, 'fd')  # 加载训练数据集
    val_dataset = MyDataset(val_path, 'fd')  # 加载验证数据集
    train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)  # 创建训练数据加载器
    val_loader = DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=True, drop_last=True)  # 创建验证数据加载器

    # 定义模型
    model = DSCTransformer(input_dim=input_dim, num_classes=10, dim=d_model, depth=N,
                           heads=head, mlp_dim=d_ff, dim_head=d_model, emb_dropout=dropout, dropout=dropout)  # 初始化模型
    criterion = nn.CrossEntropyLoss()  # 定义损失函数
    params = [p for p in model.parameters() if p.requires_grad]  # 获取模型参数
    optimizer = optim.Adam(params, lr=lr)  # 定义优化器
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')  # 判断是否有可用的 GPU
    print("using {} device.".format(device))  # 打印使用的设备
    model.to(device)  # 将模型移动到对应的设备(GPU 或 CPU)

2. 第二段代码

这段代码是一个训练循环,它用于在每个训练周期(epoch)中训练模型,并在每个周期结束后评估模型的性能。在每个训练周期中,代码首先使用模型在训练数据上进行训练,然后使用模型在验证数据上进行验证,并打印出每个周期的训练损失、训练准确率、验证损失和验证准确率。

best_acc_fd = 0.0  # 初始化最佳准确率为0
train_result = []  # 记录训练结果
result_train_loss = []  # 记录训练损失
result_train_acc = []  # 记录训练准确率
val_result = []  # 记录验证结果
result_val_loss = []  # 记录验证损失
result_val_acc = []  # 记录验证准确率

# 训练循环
for epoch in range
<think>好的,用户现在要做一个Transformer项目,需要逐行分析代码。首先,我需要确定用户的需求是什么。可能用户已经对Transformer有一定的了解,但可能在具体实现时遇到了困难,或者想确保自己的代码是正确的。用户提到“逐行分析代码”,所以可能需要一个详细的代码解释,而不仅仅是整体结构的说明。 接下来,我需要考虑用户可能的背景。用户可能有一定的编程和深度学习基础,但对Transformer的具体实现细节还不熟悉。因此,在分析代码时,应该兼顾高层次的结构和底层的实现细节,比如自注意力机制、位置编码等部分。 然后,我需要确定用户使用的框架。Transformer通常用PyTorch或TensorFlow实现,这里假设用户使用PyTorch,因为它在研究领域比较流行。接下来,我需要回忆Transformer的关键组件:嵌入层、位置编码、多头注意力、前馈网络、编码器层、解码器层等。每个部分都需要详细解释,尤其是自注意力的计算和掩码的处理。 用户可能需要代码逐行解释,所以需要准备一段典型的Transformer代码,并对其中的每一行进行注释。同时,要确保注释不仅说明代码在做什么,还要解释为什么这么做,比如为什么使用缩放点积注意力,如何实现掩码避免未来信息泄露等。 还需要考虑用户可能的误区,比如在位置编码中正弦和余弦函数的使用,或者多头注意力的维度变换是否正确。此外,残差连接和层归一化的位置也是容易出错的地方,需要重点说明。 另外,用户可能对代码中的一些细节不太清楚,比如张量维度的变化、矩阵乘法的顺序、掩码的应用方式等。在逐行分析时,需要明确这些部分,帮助用户理解数据流的走向。 最后,要确保回答结构清晰,分步骤解释每个模块,比如先处理嵌入,再位置编码,然后自注意力,前馈网络等。可能还需要提到训练时的注意事项,如学习率设置、优化器选择、损失函数等,但用户当前的问题主要集中在代码分析上,所以可能暂时不需要深入训练细节。 总结下来,我需要提供一个结构化的代码分析,分模块逐行解释,同时强调关键技术和背后的原理,确保用户能够理解每一行代码的作用和必要性。</think>以下是一个基于PyTorch的Transformer核心代码逐行分析。我们将以编码器(Encoder)和自注意力(Self-Attention)模块为例进行解析: ```python import torch import torch.nn as nn
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值