深度学习第三周:本地数据集——天气识别

往期内容

深度学习第一周:单通道图像——MNIST手写数字识别
深度学习第二周:多通道图像——CIFAR10彩色图片识别

一、 前期准备

数据:🔗百度网盘(提取码:hqij )

1. 设置GPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

# 设置硬件设备,如果有GPU则使用,没有则使用cpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

Output:

device(type='cuda')  #代表使用的是GPU

2. 设置随机种子

为了保证实验可以复现,我们通过随机种子控制随机数的生成。

import random
import numpy as np

def setup_seed(seed):
     torch.manual_seed(seed)
     torch.cuda.manual_seed_all(seed)
     np.random.seed(seed)
     random.seed(seed)
     torch.backends.cudnn.deterministic = True
# 设置随机数种子
setup_seed(2)

3. 导入数据

数据为本地数据,weather_photos 文件夹中每个文件夹代表了一个类别。我们首先通过文件夹名称,查看数据的类别信息。

data_dir = './data/weather_photos/'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[2] for path in data_paths]
classeNames
['cloudy', 'rain', 'shine', 'sunrise']
  • pathlib.Path(data_dir):它将data_dir字符串转换成一个Path对象。这个对象代表了文件系统中的具体路径,无论这个路径是否真实存在。
  • data_dir.glob('*'):生成一个迭代器。这个迭代器遍历与指定模式匹配的所有路径。当前模式是'*',意味着它会匹配data_dir目录下的所有文件和子目录,不论它们的名字是什么。
  • .split("\\"):这个方法用于分割路径字符串,使用反斜杠(\)作为分隔符。在Windows操作系统中,路径通常使用反斜杠作为目录分隔符。注意,由于反斜杠在Python字符串中用作转义字符,因此需要双写(即"\")以表示字面上的反斜杠字符。
import matplotlib.pyplot as plt
from PIL import Image

# 指定图像文件夹路径
image_folder = './data/weather_photos/cloudy/'

# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))] 
#os.listdir(image_folder)文件夹中所有文件

# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))

# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files): 
    # axes.flat是一个迭代器,它按行优先的顺序迭代axes数组中的每个元素(即子图)
    # zip:将两个迭代器组合到一起
    img_path = os.path.join(image_folder, img_file) #将两块string组合成path
    img = Image.open(img_path) #根据img_path打开图片
    ax.imshow(img)
    ax.axis('off')

# 显示图像
plt.tight_layout()
plt.show()

在这里插入图片描述

  • os.listdir(image_folder):生成迭代器,获取 image_folder 文件夹下所有的文件名。
  • .endswith((".jpg", ".png", ".jpeg")):只获取结尾为 ".jpg", ".png", ".jpeg" 的文件。
  • axes.flat:是一个迭代器,它按行优先的顺序迭代axes数组中的每个元素(即子图)。
  • zip:将两个迭代器组合到一起。

对数据进行预处理,

total_datadir = './data/weather_photos/'


train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # mean, std 三通道值是从imagenet训练集中抽样算出来的
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
# 这是一个用于加载图像数据的类。这个类预期数据以一种特定的文件夹结构组织,即数据集的每个类别都有自己的文件夹,文件夹名为类别名,文件夹内包含属于该类别的所有图像。
total_data
  • datasets.ImageFoldertorchvision.datasets.ImageFolder是PyTorch提供的一个类,它用于处理那些目录结构按类别组织的图像数据集。每个类的图像应存储在各自的子目录中。ImageFolder自动将这些子目录的名称作为类标签。
  • mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]:mean, std 三通道值是从imagenet训练集中抽样算出来的。

4. 划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
  • torch.utils.data.random_split: 这是PyTorch提供的一个功能,用于将给定的数据集随机分割成非重叠的新数据集组。它接收至少两个参数:total_data是要被分割的数据集,[train_size, test_size]是一个整数列表,列表中的每个整数定义了返回的每个分割中的数据点数量。

通过 torch.utils.data.DataLoader 设置 Loader,

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
#                                        worker_init_fn=setup_seed(1),
                                       num_workers=2)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size,
                                      shuffle=True,
#                                       worker_init_fn=setup_seed(1),  # 用于设置每个worker的随机种子
                                      num_workers=2) # num_workers的经验设置值是自己电脑/服务器的CPU核心数
  • num_workers=2: 这个参数设置了用于数据加载的子进程数。增加num_workers的数量可以提高数据加载的速度,特别是当数据集比较大或者数据预处理比较耗时时。设置为2意味着会有两个工作进程并行读取数据。这个参数需要根据本地/服务器性能,进行灵活调整,并非越大越好。

2.构建网络

import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12) # 对当前batch下所有图片的同一个特征的所有通道,进行归一化
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool1 = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.pool2 = nn.MaxPool2d(2,2)
        self.fc1 = nn.Linear(24*50*50, len(classeNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool1(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool2(x)                        
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)

        return x
  • nn.Conv2d(input_channel, output_channel, kernel_size) CNN理论核心——卷积层,设置kernel / filter 大小和个数,用于提取数据特征。
  • nn.MaxPool2d(2) 下采样(池化),降低数据维数,表示抽象概念,传入参数为池化核大小。
  • nn.ReLU激活函数,赋予模型拟合非线性关系的能力。
  • nn.Linear(input_dimension, output_dimension)全连接层,相当于给数据乘以权重矩阵W,W的size由input_dimension, output_dimension和确定。
  • 卷积核的size为:kernel_size × kernel_size × 上一层channel,因此,卷积核维数 = 数据维数 + 1。

查看网络参数:

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            912
├─BatchNorm2d: 1-2                       24
├─Conv2d: 1-3                            3,612
├─BatchNorm2d: 1-4                       24
├─MaxPool2d: 1-5                         --
├─Conv2d: 1-6                            7,224
├─BatchNorm2d: 1-7                       48
├─Conv2d: 1-8                            14,424
├─BatchNorm2d: 1-9                       48
├─MaxPool2d: 1-10                        --
├─Linear: 1-11                           240,004
=================================================================
Total params: 266,320
Trainable params: 266,320
Non-trainable params: 0
=================================================================

三、 训练模型

1. 设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.Adam(model.parameters(),lr=learn_rate)

2. 训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss
  • optimizer.zero_grad()清空上一次的累计梯度
  • loss.backward()根据tensor进行过的数学运算来自动计算其对应的梯度。具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_gradsTrue,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。
  • optimizer.step() step()函数的作用是执行一次反向传播,通过梯度下降法来更新参数的值。optimizer只负责通过梯度下降进行优化,而不负责产生梯度

3.测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器。

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item() #累计loss
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item() # 累计正确个数

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4. 正式训练

epochs     = 30
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

import time

for epoch in range(epochs):
    
    since_train = time.time()
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    time_train = time.time() - since_train
    
    since_test = time.time()
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    time_test = time.time() - since_test
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f},Train_Time:{:.3f},Test_Time:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, time_train, time_test))
print('Done')
Epoch: 1, Train_acc:70.8%, Train_loss:0.829, Test_acc:62.7%,Test_loss:0.799,Train_Time:11.334,Test_Time:2.139
Epoch: 2, Train_acc:89.9%, Train_loss:0.317, Test_acc:87.6%,Test_loss:0.379,Train_Time:3.914,Test_Time:2.089
Epoch: 3, Train_acc:89.0%, Train_loss:0.261, Test_acc:87.6%,Test_loss:0.449,Train_Time:3.956,Test_Time:2.064
Epoch: 4, Train_acc:94.4%, Train_loss:0.140, Test_acc:92.0%,Test_loss:0.483,Train_Time:3.904,Test_Time:2.082
Epoch: 5, Train_acc:95.9%, Train_loss:0.194, Test_acc:91.6%,Test_loss:0.346,Train_Time:4.098,Test_Time:2.019
Epoch: 6, Train_acc:93.1%, Train_loss:0.208, Test_acc:90.2%,Test_loss:0.324,Train_Time:3.958,Test_Time:1.998
Epoch: 7, Train_acc:96.0%, Train_loss:0.123, Test_acc:87.6%,Test_loss:0.401,Train_Time:4.253,Test_Time:2.025
Epoch: 8, Train_acc:98.6%, Train_loss:0.058, Test_acc:92.0%,Test_loss:0.377,Train_Time:4.096,Test_Time:2.047
Epoch: 9, Train_acc:98.7%, Train_loss:0.049, Test_acc:92.0%,Test_loss:0.411,Train_Time:3.961,Test_Time:2.014
Epoch:10, Train_acc:98.6%, Train_loss:0.047, Test_acc:91.6%,Test_loss:0.366,Train_Time:4.232,Test_Time:2.060
Epoch:11, Train_acc:98.7%, Train_loss:0.048, Test_acc:92.0%,Test_loss:0.350,Train_Time:4.083,Test_Time:2.053
Epoch:12, Train_acc:98.4%, Train_loss:0.043, Test_acc:90.7%,Test_loss:0.438,Train_Time:4.236,Test_Time:2.101
Epoch:13, Train_acc:98.9%, Train_loss:0.041, Test_acc:91.1%,Test_loss:1.275,Train_Time:3.824,Test_Time:2.184
Epoch:14, Train_acc:99.8%, Train_loss:0.021, Test_acc:92.0%,Test_loss:0.391,Train_Time:3.904,Test_Time:2.133
Epoch:15, Train_acc:99.8%, Train_loss:0.017, Test_acc:92.4%,Test_loss:0.358,Train_Time:4.105,Test_Time:2.086
Epoch:16, Train_acc:99.4%, Train_loss:0.033, Test_acc:92.4%,Test_loss:0.404,Train_Time:3.958,Test_Time:2.116
Epoch:17, Train_acc:99.0%, Train_loss:0.040, Test_acc:92.9%,Test_loss:0.363,Train_Time:3.829,Test_Time:2.024
Epoch:18, Train_acc:98.9%, Train_loss:0.042, Test_acc:90.2%,Test_loss:0.448,Train_Time:4.067,Test_Time:2.134
Epoch:19, Train_acc:98.8%, Train_loss:0.050, Test_acc:91.1%,Test_loss:0.406,Train_Time:3.851,Test_Time:2.055
Epoch:20, Train_acc:98.7%, Train_loss:0.041, Test_acc:91.1%,Test_loss:0.436,Train_Time:4.047,Test_Time:2.067
Epoch:21, Train_acc:99.7%, Train_loss:0.015, Test_acc:91.6%,Test_loss:0.368,Train_Time:3.974,Test_Time:2.103
Epoch:22, Train_acc:99.9%, Train_loss:0.010, Test_acc:91.6%,Test_loss:0.367,Train_Time:3.812,Test_Time:2.079
Epoch:23, Train_acc:99.9%, Train_loss:0.008, Test_acc:92.0%,Test_loss:1.187,Train_Time:3.715,Test_Time:2.234
Epoch:24, Train_acc:99.9%, Train_loss:0.007, Test_acc:92.0%,Test_loss:0.357,Train_Time:4.020,Test_Time:2.020
Epoch:25, Train_acc:99.9%, Train_loss:0.005, Test_acc:92.0%,Test_loss:0.406,Train_Time:3.939,Test_Time:2.106
Epoch:26, Train_acc:99.4%, Train_loss:0.038, Test_acc:91.1%,Test_loss:0.360,Train_Time:3.965,Test_Time:2.092
Epoch:27, Train_acc:96.1%, Train_loss:0.123, Test_acc:90.7%,Test_loss:0.421,Train_Time:3.927,Test_Time:2.182
Epoch:28, Train_acc:99.4%, Train_loss:0.017, Test_acc:91.6%,Test_loss:0.404,Train_Time:3.834,Test_Time:2.085
Epoch:29, Train_acc:99.6%, Train_loss:0.013, Test_acc:92.4%,Test_loss:0.358,Train_Time:3.831,Test_Time:2.095
Epoch:30, Train_acc:99.7%, Train_loss:0.022, Test_acc:91.1%,Test_loss:1.242,Train_Time:3.758,Test_Time:2.129
Done
  • model.train()的作用是启用 Batch Normalization 和 Dropout。
  • model.eval()的作用是关闭 Batch Normalization 和 Dropout。Normalization部分是调用training set中的方差和均值进行。Dropout部分不需要,Dropout部分只是帮助模型训练,防止过拟合。因此我们直接调用模型训练好的参数即可。

四、 结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

个人总结

对于本地数据,我们只需要利用datasets.ImageFolder将其转化,再利用torch.utils.data.random_split进行划分,最后使用torch.utils.data.DataLoader转化为DataLoader即可。

  • 40
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值