全球小麦头数据集简介
- 全球小麦头数据集是一个专门为开发精确的小麦头检测模型而设计的图像集合,旨在支持小麦表型分析和作物管理。
- 小麦头,即麦穗,是小麦植株结粒的部分,其密度和大小的准确估计对于评估作物健康、成熟度和产量潜力至关重要。


数据集特点
- 多区域覆盖:涵盖欧洲(法国、英国、瑞士)和北美(加拿大)的3,000多张训练图像,以及来自澳大利亚、日本和中国的约1,000张测试图像。
- 自然变化捕捉:所有图像是室外田间拍摄,真实反映了小麦头部外观的变化。
- 详细注释:每张图像都配有小麦头边界框标注,适用于物体检测任务。
- 多样性与复杂性:图像展示了各种不同的生长环境和条件,增加了模型训练的挑战性和适用性。
数据集结构
全球小麦头数据集主要分为两个子集:
- 训练集:包含来自欧洲和北美的3,000多张图像,标有小麦头边界框,用于训练物体检测模型。
- 测试集:由来自澳大利亚、日本和中国的约1,000张图像组成,用于评估模型在未见过的数据上的表现。
应用场景
全球小麦头数据集广泛应用于深度学习模型的训练和评估,特别是在小麦头检测任务中。它为植物表型分析和作物管理提供了宝贵资源,帮助研究人员更准确地理解作物生长情况,并优化农业实践。
数据集配置文件 (YAML)
YAML 文件定义了数据集的路径、类别和其他相关信息。对于全球小麦头数据集而言,GlobalWheat2020.yaml 文件保存在 上。以下是 YAML 文件的内容概览:
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Wheat # dataset root dir
train: # train images (relative to 'path') 3422 images
- images/arvalis_1
- images/arvalis_2
- images/arvalis_3
- images/ethz_1
- images/rres_1
- images/inrae_1
- images/usask_1
val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
- images/ethz_1
test: # test images (optional) 1276 images
- images/utokyo_1
- images/utokyo_2
- images/nau_1
- images/uq_1
# Classes
names:
0: wheat_head
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
from ultralytics.utils.downloads import download
from pathlib import Path
# Download
dir = Path(yaml['path']) # dataset root dir
urls = ['https://zenodo.org/record/4298502/files.zip',
'https://assets/releases/downloadlabels.zip']
download(urls, dir=dir)
# Make Directories
for p in 'annotations', 'images', 'labels':
(dir / p).mkdir(parents=True, exist_ok=True)
# Move
for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
(dir / 'global-wheat-codalab-official' / p).rename(dir / 'images' / p) # move to /images
f = (dir / 'official' / p).with_suffix('.json') # json file
if f.exists():
f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations
使用方法
要在全球小麦头数据集上训练YOLO11n模型,可以使用以下代码片段:
f
# Load a pre-trained model (recommended for training)
model = YOLO("yolo11n.pt")
# Train the model
results = model.train(data="Wheat.yaml", epochs=100, imgsz=640)
确保你已经下载并配置好了Global/Wheat.yaml文件,它指定了数据集的位置和类别信息。
样本数据与注释
数据集中包含了多种不同条件下的室外田间图像,这些图像带有小麦头边界框的详细注释,有助于开发精确的小麦头检测模型。例如,下图展示了麦头检测的一个实例,其中每个麦头都被边界框标注出来,体现了数据集的多样性和复杂性。

引文和致谢
如果你的研究或开发工作使用了全球小麦头数据集,请引用以下文献:
我们感谢所有为全球小麦头数据集的创建和维护做出贡献的研究人员和机构。有关更多信息,请访问.
常见问题
- 用途:主要用于开发和训练小麦头检测的深度学习模型,以更准确地估计小麦头的密度、大小和整体作物产量潜力,支持高效的作物管理和粮食安全。
- 如何训练YOLO11n模型:通过加载预训练模型并指定数据集配置文件进行训练。具体步骤如上所述。
- 数据集的主要特点:包括来自多个地区的高质量图像,具有丰富的自然变化,详细的注释,以及广泛的地理分布。
- 配置YAML文件位置:找到
Wheat.yaml文件。 - 为什么麦头检测重要:因为这有助于准确评估作物健康状况、成熟度和产量潜力,从而支持可持续农业和粮食安全。
全球小麦头数据集不仅促进了学术研究的进步,也为实际应用中的作物管理提供了有力工具。随着技术的发展,我们可以期待更多创新性的解决方案出现,进一步推动智慧农业的发展。
1093

被折叠的 条评论
为什么被折叠?



