木材缺陷识别图像数据集
为清晰呈现“湖州地板数据第三期”数据集核心信息,我先将类别、数量、格式及应用价值整理成表格,再分三段阐述类别、数量关键信息。
湖州地板数据第三期数据集核心信息表
信息类别 | 具体内容 |
---|---|
数据集类别 | 计算机视觉领域下的目标检测数据集,包含“crack(裂缝)”和“knot(节疤) ”2个核心类别,聚焦地板表面典型缺陷识别 |
数据数量 | 涵盖721张图像数据 ,可支撑目标检测模型的训练、验证与测试,为模型性能优化提供充足样本基础 |
数据格式 | 以图像文件形式呈现,搭配目标检测所需的标注信息,适配主流计算机视觉模型训练流程,便于直接用于模型开发 |
应用价值 | 可应用于地板生产质检环节,实现对地板裂缝、节疤缺陷的自动识别,提升质检效率;也能为地板质量评估算法研发提供数据支撑,推动地板行业智能化质检发展 |
该数据集属于目标检测类型,专门针对地板表面缺陷设计。核心类别仅有两类,分别是“crack(裂缝)”和“knot(节疤)”,精准聚焦地板生产中常见的外观质量问题,为缺陷识别场景提供针对性数据支持。
从数据数量来看,数据集包含721张图像,这个规模能够满足中小型目标检测模型的训练需求。足量的图像样本可覆盖不同地板材质、光照条件下的缺陷表现,让训练出的模型更具实用性。
在数据应用场景上,其核心价值集中在地板行业的质量检测领域。借助这些标注好缺陷类别的图像,企业或研发者能开发自动质检系统,减少人工检测误差,同时也为地板缺陷识别算法的迭代升级提供了关键数据基础。