文章目录
前言
检索增强生成(RAG)是生成式 AI 中的一类应用,支持使用自己的数据来增强 LLM 模型的知识。
RAG 通常会用到三种不同的AI模型,即 Embedding 模型、Rerankear模型以及大语言模型。
本文将介绍如何根据您的数据类型以及语言或特定领域选择合适的 Embedding 模型。
一、Embedding模型介绍
用一句话解释Embedding的本质
“Embedding是将文本(词、句、段落)映射到高维稠密向量的技术,其核心是将语义信息编码为计算机可计算的数学表示。”
类似于将‘苹果’转化为[0.23, -0.56, …, 0.78]这样的数字向量,语义相近的词(如‘苹果’和‘iPhone’)在向量空间中距离更近。
RAG中的作用:
索引阶段:将知识库文档切片为向量,构建向量数据库(如Milvus/FAISS)
检索阶段:将用户Query转换为向量,通过相似度计算(余弦相似度)召回相关文档