【DeepSeek R1构建本地RAG知识库】向量(Embedding)模型选型


前言

检索增强生成(RAG)是生成式 AI 中的一类应用,支持使用自己的数据来增强 LLM 模型的知识。
RAG 通常会用到三种不同的AI模型,即 Embedding 模型、Rerankear模型以及大语言模型。
本文将介绍如何根据您的数据类型以及语言或特定领域选择合适的 Embedding 模型。


一、Embedding模型介绍

用一句话解释Embedding的本质
“Embedding是将文本(词、句、段落)映射到高维稠密向量的技术,其核心是将语义信息编码为计算机可计算的数学表示。”
类似于将‘苹果’转化为[0.23, -0.56, …, 0.78]这样的数字向量,语义相近的词(如‘苹果’和‘iPhone’)在向量空间中距离更近。

RAG中的作用:
索引阶段:将知识库文档切片为向量,构建向量数据库(如Milvus/FAISS)
检索阶段:将用户Query转换为向量,通过相似度计算(余弦相似度)召回相关文档


二、Embedding模型应用场景

1.垂直领域知识库(如

<think>好的,用户想了解如何集成DeepSeek构建本地知识库。首先,我需要明确DeepSeek是什么。根据之前的资料,DeepSeek是一个专注实现AGI的中国的公司,他们开放了API,比如DeepSeek-R1DeepSeek-V2模型。用户可能指的是使用这些API来集成,并结合本地知识库。 接下来,用户的需求是构建本地知识库,可能需要RAG(检索增强生成)的方法。我需要分解步骤:数据准备、向量数据库、模型集成、检索与生成、部署优化。要详细说明每个步骤,可能需要给出技术选型,比如使用Hugging Face的模型Embedding,或者用FAISS、Chroma做向量存储。还要提到如何将查询向量化,检索相关内容,再交给DeepSeek生成答案。 用户可能已经有一定的开发基础,但需要指导具体的流程和工具。需要注意本地知识库的数据处理,比如文本分割、清洗,还有可能的数据安全。还要考虑是否需要微调模型,但根据之前的信息,DeepSeek的API可能不支持微调,所以主要用RAG。 另外,可能需要提供代码示例,比如调用DeepSeek API的方式,以及使用LangChain框架简化流程。还要提醒用户注意API密钥的获取、成本控制,以及可能的性能优化,比如缓存、异步处理等。 用户可能有未明说的需求,比如希望低成本实现,或者对实时性有要求。因此,需要建议合适的向量数据库,比如轻量级的Chroma,或者分布式的Milvus。同时,强调测试和迭代的重要性,确保知识库的准确性和及时更新。 总结回答结构:先介绍整体架构,分步骤讲解,给出技术选项和示例,最后注意事项和建议。确保回答清晰,技术点准确,覆盖用户可能关心的方面。</think>要集成类似 DeepSeek模型构建本地知识库,可通过以下技术方案实现。这里以 RAG(检索增强生成)架构为例,分为知识库构建模型集成两阶段: --- ### **一、本地知识库构建流程** #### 1. 数据准备阶段 - **数据来源**:PDF/Word/HTML/数据库等结构化与非结构化数据 - **文本处理**: ```python # 示例:使用 LangChain 文本分割 from langchain.text_splitter import RecursiveCharacterTextSplitter splitter = RecursiveCharacterTextSplitter( chunk_size=500, chunk_overlap=50 ) documents = splitter.split_documents(raw_docs) ``` #### 2. 向量化存储 - **Embedding 模型选型**: - 中文场景推荐:`bge-small-zh`、`text2vec-base-chinese` - 英文场景推荐:`all-mpnet-base-v2` - **向量数据库选择**: ```python # 使用 ChromaDB 示例 from langchain.vectorstores import Chroma from langchain.embeddings import HuggingFaceEmbeddings embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-zh") vector_db = Chroma.from_documents(documents, embeddings, persist_directory="./chroma_db") ``` --- ### **二、DeepSeek 模型集成** #### 1. API 调用方式(云端) ```python import requests def deepseek_query(prompt, api_key): headers = {"Authorization": f"Bearer {api_key}"} payload = { "model": "deepseek-chat", "messages": [{"role": "user", "content": prompt}] } response = requests.post("https://api.deepseek.com/v1/chat/completions", json=payload, headers=headers) return response.json()["choices"][0]["message"]["content"] ``` #### 2. 本地化部署方案(需申请模型权限) ```python # 使用 transformers 库调用本地模型 from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-llm-7b-chat") tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-llm-7b-chat") def local_inference(query): inputs = tokenizer(query, return_tensors="pt") outputs = model.generate(**inputs) return tokenizer.decode(outputs[0], skip_special_tokens=True) ``` --- ### **三、RAG 系统整合** ```python from langchain.chains import RetrievalQA # 构建检索增强生成链 qa_chain = RetrievalQA.from_chain_type( llm=DeepSeekLLM(), # 替换为实际调用 chain_type="stuff", retriever=vector_db.as_retriever(), return_source_documents=True ) # 执行查询 response = qa_chain("如何申报企业所得税?") print(response["result"]) ``` --- ### **四、关键技术栈选型** | 模块 | 推荐方案 | |----------------|----------------------------------| | 文本处理 | LangChain、Unstructured | | 向量编码 | SentenceTransformers、BGE 中文模型 | | 向量数据库 | Chroma(轻量级)、Milvus(大规模) | | 大模型服务 | DeepSeek API/本地部署模型 | | 服务部署 | FastAPI + Docker 容器化 | --- ### **五、优化方向** 1. **检索优化**: - 混合检索(关键词+向量) - Rerank 模型优化排序(如 bge-reranker) 2. **缓存机制**: ```python # 使用 LRU 缓存常见问题 from functools import lru_cache @lru_cache(maxsize=1000) def cached_qa(question): return qa_chain(question) ``` 3. **知识更新**: - 增量更新:监听文件变动自动触发向量库更新 - 版本管理:快照机制实现知识库版本回滚 --- ### **六、注意事项** 1. 数据安全:敏感数据需做脱敏处理 2. 成本控制:API 调用需设置用量阈值 3. 质量评估:使用 RAGAS 等工具评估系统效果 4. 硬件要求:7B 模型需至少 16GB GPU 显存 建议通过 LangChain 或 LlamaIndex 框架简化开发流程,完整实现周期约 2-4 周(视数据规模而定)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xd聊架构

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值