常微分实验(1.1) 变量分离方程与变量变换

实验目标:

大家都是初学者嘛,既然会点进这种标题进来的话。但是我们这里也不准备解释什么是常微分方程了,直接进入本文实验的终极目标:

告诉你

(y+x)dy+(xy)dx=0

然后问这个微分方程组的解是什么?

有没有一脸懵13的感觉ahhh,这tm哪里是变量分离方程了?emmm它确实不是,只不过我们这里也不准备花太多时间在变量分离方程上面(哎,要想解好变量分离方程建议大家去查查数学分析里面的求积分的方法更靠谱,这篇文章更多是在讲如何用变量变换把较一般的方程变成变量分离方程。)

先解释一下变量分离方程吧

emmm大家都知道万丈高楼平地起咯,虽然我觉得没有必要解释但是还是照顾一下初学者吧。变量分离方程大概就是长这个样子的:

dydx=f(x)φ(y)

有什么特点呢?特点就是这个方程特别容易解呀~很容易就可以将这个方程化为:

1φ(y)dy=f(x)dx

这样的形式,然后我们再两边同时积分:
1φ(y)dy=f(x)dx

接下来就是在考察大家的微积分知识了。

ok我们接下来进入正题,说一说一些常见的需要我们用些小手段进行才能进行变量分离的微分方程。

形如 dydx=g(yx) 的形式转化为微分方程

其实这种方程叫齐次微分方程,我们用什么手段对其进行变换呢?让我思考一下。。。

先想好一个变换函数(这名字我自己想的),比如说

u=yx

然后我们在把这个变换函数给变换一个形式:
y=ux

然后我们再对两边同时求导
dydx=ux+u

看!我们又得到了一个 dydx 的表达式,我们现在把它代入我们的标题中,就有:
ux+u=g(u)

这里已经得到一个变量分离函数啦~不造大家有米有看出来呀?没有看出来的话,我再化简一点点就有:
dudx=g(u)ux

这不就是了吗?大家应该还记得怎么解吧···不记得的话自己看上面吧。

好的,有了这个变换—求导—重新代入的这几步小手段,我们可以轻而易举的搞定 dydx=g(yx) 这种形式的微分方程,现在我们可以解决啥问题呢,比如 dydx=yx+tanyx ,比如 xdydx+2xy=y(x<0)
用以上所述的方法,这些基本上都只要做一些化简,或者根本就不用化简就可以搞定的微分方程。大家应该没有这需求,我也懒得在这里演示了。

接下来我们看看另外一种更为一般的且可以变量分离的微分方程:

dydx=a1x+b1y+c1a2x+b2y+c2

这样的形式。
显然我们之前所说的只不过是这个方程的一个特例而已。
那么这个样子的微分方程还可以用我们之前的套路吗?老实说不太行,我们来具体分析一下吧。
第一种情况: a1a2=b1b2=c1c2=k 的话那么有
dydx=k

接下来怎么做应该不用我说了吧
第二种情况:
a1a2=b1b2=kc1c2

这个时候怎么办呢?
构造变量分离方程 u=a2x+b2y
求导数有
dudx=a2+b2dydx

将原式代入进来:
dudx=a2+b2ku+c1u+c2

这个东西是啥?它的右边只有 u 而没有x了啊,它就是一个变量分离方程。
好的,接下来看最后一种情况,这也是我们无法用以前的 变换—求导—重代入套路实现的一种情况:
a1a2b1b2

那我们怎么做呢,我们要想办法消去常数项,用给 xy ,为什么要消去常数项呢?我们来看看消去之后的效果,方程就可以变成:
dYdX=a1X+b1Ya2X+b2Y

这个是啥呀,这个就是 g(YX) 的形式呀,分子分母同时除以X就可以了。
那么现在问题来了,我们怎么样才能得到这个形式呢?不妨假设 X=xα,Y=yβ ,则原式可以变成:
dYdX=a1x+b1ya1αb1β+c1a2x+b2ya2αb2β+c2

然后求解出使得这个式子的常数项0的 αβ 就可以了。
求解出来之后就按照我们刚才所讲的思路用 dydx=g(yx) 的解题方法进行求解就可以了。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值