2.1 变量分离方程与变量变换

2.1.1变量分离方程

形如
d y d x = f ( x ) ϕ ( y ) \frac{dy}{dx}=f(x)\phi(y) dxdy=f(x)ϕ(y)
的方程,称为变量分离方程,这里的 f ( x ) , ϕ ( y ) f(x),\phi(y) f(x),ϕ(y)分别是 x , y x,y x,y的连续函数.
注意:

  1. 进行变量分离时,讨论 ϕ ( y ) \phi(y) ϕ(y)不为零和为零的两种情况;
  2. 在求解的过程中,注意参数的范围,参数的范围弄错,会导致解的错乱.

2.1.2可化为变量分离方程的类型(三种)

(1)、形如
d y d x = g ( x y ) \frac{dy}{dx}=g(\frac{x}{y}) dxdy=g(yx)
的方程称为齐次微分方程,这里的 g ( u ) g(u) g(u) u u u的连续函数.

补充——齐次函数

  1. 齐次函数定义:把函数的自变量乘以一个因子,如果此时因变量相当于原函数乘以这个因子的幂,则称此函数为齐次函数.定义函数 f ( x 1 , x 2 , ⋯   , x n ) f(x_1,x_2,\cdots,x_n) f(x1,x2,,xn) k k k次齐次函数,需满足关系: f ( λ x 1 , λ x 2 , ⋯   , λ x n ) = λ k f ( x 1 , x 2 , ⋯   , x n ) f(\lambda{x_1},\lambda{x_2},\cdots,\lambda{x_n})=\lambda^kf(x_1,x_2,\cdots,x_n) f(λx1,λx2,,λxn)=λkf(x1,x2,,xn)
  2. k k k=0时,称为零次齐次函数.

(2)、形如 d y d x = f ( a x + b y + c ) ( a ! = 0 , b ! = 0 ) \frac{dy}{dx}=f(ax+by+c)(a!=0,b!=0) dxdy=f(ax+by+c)(a!=0,b!=0)这里 f ( u ) f(u) f(u) u u u的连续函数.

(3)、形如 d y d x = f ( a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 ) \frac{dy}{dx}=f(\frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2}) dxdy=f(a2x+b2y+c2a1x+b1y+c1)这里 a 1 , a 2 , b 1 , b 2 , c 1 , c 2 a_1,a_2,b_1,b_2,c_1,c_2 a1,a2,b1,b2,c1,c2均为常数.

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值