视频监控平台&&运维部署平台设计

这里必须得讲一下,其实我不是一个专业的产品经理,但是这个平台的原型设计集百家之所长,然后融汇了自己的思考,前后修改无数遍,最终成型。爱好由来落笔难,一诗千改心始安。期间查看了精英科技、浪潮、上海星环科技、北京壹合源码、海康、中矿安华、成都电子科大、山西联通、山西科达自控、华为等多个厂家的类似平台。

目录

视频监控平台

概述:

平台架构:

算力设备管理:

标准视联:

算法管理:

场景配置:

实时识别视频展示:

告警管理:

BI大屏:

系统管理:

升华功能:

核心技术指标:

运维部署平台:

AI管理


视频监控平台

概述:

视频监控平台作为现代安防体系的核心枢纽,整合了先进的视频采集、传输、存储与分析技术,构建起全方位、智能化的监控体系,为各行业提供高效、可靠的安全保障及数据支持。

在功能层面,该平台具备强大的视频汇聚能力,可接入多种类型、不同品牌的监控摄像头,无论是高清网络摄像机,还是模拟摄像机,都能实现无缝对接,将分散的视频流统一汇聚管理。同时,凭借高效的视频存储技术,能根据用户需求灵活设置存储策略,确保重要视频数据长期、稳定保存,满足事后回溯查证的需求。在实时监控方面,平台提供流畅、清晰的视频画面展示,支持多画面切换、云台控制等操作,让监控人员对监控区域进行全方位、多角度实时掌控。

AI 算法平台实现对井下关键点位工业视频相机视频的识别与分析,可以管理井上的算力服务器、视频 AI 平台服务器、流媒体节点等设备的管理。系统可以和集控系统进行交互,可观看实时视频、布控视频、占警回放视频、录像视频、实时告警信息,可执行用户管理、算力设备管理、设备告警日志等管理任务,提供人员操作日志、视频告警日志、模型管理日志用于观察系统健康状态等功能,提供告警数据统计报表、设备运行状态报表来查看监控场景是否出现异常。

视频监控平台融合了人工智能技术,实现智能视频分析。例如,具备行为分析功能,可自动识别人员的异常行为,如奔跑、摔倒等,并及时发出警报;还能进行目标检测,准确识别车辆、行人、物体等,极大提高监控效率,减轻人工监控压力。此外,平台采用先进的网络传输技术,确保视频数据在复杂网络环境下的稳定传输,支持远程访问,方便用户随时随地通过电脑、手机等终端设备查看监控画面,实现远程监控管理。

平台架构:

系统接入矿区摄像图像平台,基于人工智能算力平台、人工智能算法库对数据流进行视频推理和分析预警,提供矿端大屏、视频监控、数据看板、系统管理等页面,提供矿山生产过程中的安全隐患实时监测和预警能力。

算力设备管理:

负责推理服务器设备的管理,设备编号、设备名称、设备地址、cpu信息、gpu信息(nvidia、atlas、寒武纪、……)、配置描述、设备ip、用户名、密码、算法部署目录、在线与否。

Plus功能:

负责流媒体服务器设备的管理

功能:

  1. 设备增、删、改、查
  2. 设备接入,设备编号、设备名称、设备地址、cpu信息、gpu信息(nvidia、atlas、寒武纪、……)、配置描述、设备ip、用户名、密码、算法部署目录、在线与否等基本信息展示。
  3. 设备硬件信息展示,包括cpu、内存、磁盘(空间占用率超95%告警)、网络、gpu、显存等。

标准视联:

支持RTSP、RTMP、MJPEG、FLV、GB28181等主流视频协议,按需对音视频进行编解码;提供视频录制、回放和实时视频直播等功能。

1.表模型设计

2.实现

根据表结构生成前后端增删改查代码,页面录入时来源选直连摄像头或者硬盘录像机。

新增之后启动定时心跳任务,暂定30S执行一次,是否在线检测方法需要调研。

主要功能:

  1. 摄像头增、删、改、查
  2. 摄像头权限与分组管理:支持对摄像头进行分组管理,可按照矿山区域(如井口、采掘面、运输巷道等)、作业类型等维度划分组别。同时,可针对不同的用户角色设置摄像头的访问权限,如仅允许特定人员查看特定区域的摄像头画面,确保监控数据的安全性和保密性。
  3. (摄像头、NVR、虚拟视频流)接入配置(企业名称、直播流名称、状态、预览图、编码格式、来源(摄像头、NVR、虚拟视频流)、跟新时间、视屏、是否在线(手动跟新按钮、前端持续心跳刷新)、创建时间、备注、操作(修改))
  4. 实时视频直播、截图
  5. Excel配置文件导入、导出

算法管理:

基于应用场景,用户可以通过平台添加所需算法,并配置算法ID、算法阈值、显示阈算法配置值、算法参数、算法状态等信息。

1.表模型设计

2.实现

需要有一个和运维部署平台的算法列表接口,根据列表选择算法拉取到本地,由前台操作启停按钮,后台直接拉起或者停止。

拉起或者停止方法:从算法启动命令中拼接执行命令,到指定目录执行。

功能:

  1. 算法增、删、改、查
  2. 算法接入配置(算法编号、算法名称、业务大类编码、业务大类名称、归属企业类型、部署机器ip、创建时间、备注、操作(修改))
  3. 从中心端运维平台拉取算法列表功能、拉取具体算法模块(代码、容器、模型)功能
  4. 支持本地离线导入算法功能
  5. 算法包括基于单张图片类型的、基于视频类型的,思考如何体现。
  6. 算法API测试、前端界面要包含默认图片、视频等。

场景配置:

支持是对算法的绘制样式、报警等级进行配置,同 时支持对算法底库、人员库进行管理。

支持视频流实时分析、视频流轮巡分析、 图 片分析 等任务类型, 支持对分析组合、 阈值、 检测区域等参数 进行配置。

1.表模型设计

2.实现

新增场景时,需要可以在视频中框选位置,然后选择相应的模型,启动模型时传入参数,摄像头的信息 场景的信息

场景启动时,后端等待固定时间(可配置)启动录制协程,录制识别后的流(固定时长),保存到本地,流地址为http://localhost:port/demo/摄像头标识/场景标识

场景停止时,后端等待固定时间(可配置)停止录制

功能:

  1. 业务场景的增、删、改、查
  2. 创建业务场景(任务名称、点位归属、摄像头标识、摄像头名称、算法标识、算法名称、计算终端、场景启停状态、场景启动、场景停止、创建者、更新者、备注、创建时间、更新时间),关联摄像头、算法,实现视频实时识别
  3. 创建业务场景时,支持前端支持框选ROI区域(支持方形框、任意不规则框)、删除框选框、抽帧帧率设置
  4. 创建业务场景时,支持报警片段设置,要支持2种模式,模式1:比如报警时间点前后10s的短视频(可配置);模式2:自动化截取报警视频,可以设置视频最长为1min,首次报警前设置比如5s,最后报警后设置比如5s。

解释:由于报警一般都是连续的画面同时出现报警,模式1容易导致截取的视频没有把连续的报警帧全部截进去,属于那种顾头不顾尾的截取。模式2就可以自动化的截取报警片段,解决了模式1的问题,真正形成完整的报警片段。

  1. 视频实时识别后,要进行识别视频的实时录制,为后面识别短视频的输出做准备
  2. 运行模式设置,支持3种模式(24小时运行、自定义时间段运行、24小时关键帧运行)

Plus功能:

  1. 检测目标阈值设置(0-1.0)
  2. 检测目标阈最小值(目标宽度*pixel、目标高度*pixel)
  3. 生效时长、报警目标出现时长超过*s,系统自动产生告警
  4. 间隔时长在*s内,不产生同样报警

实时识别视频展示:

1.实现

从场景配置表查询所有启动的场景展示,支持单屏、4分屏、9分屏等展示,识别后的流URL:http://localhost:port/demo/摄像头标识/场景标识。

功能:

(1)支持全屏、单屏、4分屏、9分屏等展示,视频下方要注明(算法名称、场景名称)

告警管理:

具备识别结果调阅功能,第三方应用基于开放的接口,调阅模型实时识别结果和历史识别结果。支持通过 callback 推送实时报警数据,支持弹窗与语音 播报两种网页提醒方式。

1.表模型设计

1.1 实时告警信息

存储放在TDEngine国产数据库,设计一个超级表,表名ai_alert_info,每个场景的数据是一个子表。

超级表字段有

ts为时序库主键,毫秒级的时间标识

alert_info为告警文本信息

alert_flag为告警标识,无告警写0,有告警写1

alert_evidence为识别后存储的minio对象标识(对象存储minio保存的是告警发生时识别的图片)

子表的TAG为场景配置标识

1.2 告警证据数据

监听实时告警信息表后,截取证据视频之后,存储证据数据,表名ai_alert_evidence,每个场景的数据是一个子表

超级表字段有

ts为时序库主键,毫秒级的时间标识

alert_info为告警文本信息

alert_flag为告警标识,无告警写0,有告警写1

alert_evidence_video为合成视频的minio对象标识

子表的TAG为场景配置标识

2.实现

启动的场景输出告警时的告警信息及图片,存入到时序数据库(AI模型识别实现)

后端监听该超级表,监听到有告警数据后,数据库TDEngine中存储的视频流中截取告警时间戳前固定时间的视频,存入到minio中。

然后把ai_alert_info的数据转存ai_alert_evidence,并将存入minio的告警视频标识插入alert_evidence_video字段。

存入成功后根据指定规则将证据视频上传(具体规则待定)。

给前端提供告警查询接口,查询ai_alert_evidence表,并通过tag的场景配置标识关联场景信息,展示摄像头地点算法名称终端类型时间告警信息 证据集合(包括小视频和照片)是否上传。

功能:

  1. 告警信息的删、查(根据场景名称、摄像头名称、算法名称、报警处理状态、归档状态、报警等级(1-5级)等多维度的查找)
  2. 告警图片下方要注明(算法名称、摄像头、场景名称、报警时间、处理状态(未处理、已处理)、归档状态(暂不归档、正确报警、错误报警))
  3. 每一个告警图片直接鼠标点击操作,点击后可以展示更全面的信息(算法名称、场景名称、报警时间、告警等级、事件描述、摄像头名称、摄像头ID)
  4. 支持宫格试图、表格视图,2种展示模式
  5. 支持告警导出功能(根据时间、告警类型、场景名称、摄像头名称、算法名称、报警处理状态、归档状态、报警等级(1-5级)等多维度的导出)
  6. 报警弹窗、语音
  7. 报警信息统计分析
  8. 报警汇总、报警间隔、自动化间隔(按照正常的报警信息,1s可能会有25张报警图片,基于规则对一个时间段的同一个报警进行合并)
  9. 异常报警的规则过滤
  10. 报警推送,触发报警规则时,系统自动生成报警信息,并通过短信、邮件、APP 推送、声光报警等多种方式通知相关人员。报警信息包含报警类型、发生时间、具体位置、相关视频画面等详细内容,方便接收人员快速了解情况。同时,支持对报警信息进行手动确认、标记已处理等操作,实现报警信息的闭环管理。

BI大屏:

BI大屏用于监控、控制和展示矿区的生产过程、设备状态、安全信息和其他重要数据。主要目的是优化矿山运营,以适应不同矿场的具体需求和环境,提高安全性和效率。

综合展示煤矿企业的接入点位情况,在线情况,煤矿企业的生产情况,报警类型的分布情况,并提供历史报警的快速入口。将各个场景中监控点位情况进行统计展示,不仅展示了监测点在线情况、重点视频监测、摄像头在线统计信息、本月预警事件统计、告警列表、告警统计图、违规行为记录、视频轮询、告警图表统计、人流统计等,还可以直接在二维地图上点击对应点位的进行视频查看。

系统管理:

包括用户管理、权限管理、用户组管理(可以组内添加用户)、日志管理、系统配置(平台名称、logo、语言、主题)、接口授权、接口文档、数据备份与恢复、安全管理、系统升级等功能。

Plus功能:录像文件保留时间设置

升华功能:

  1. 要有边缘端视频监控平台、中心端运维部署平台,这2个概念。
  2. 平台要支持分布式,机器设备—摄像头—算法,3者之间的对应关系应该是m:n:k的模式。
  3. 场景管理中,要有在哪台机器部署算法,这样的集群概念。
  4. 场景管理中,要支持单摄像头单算法、单摄像头多算法(分开跑)、单摄像头多算法(一起跑)。
  5. 配置信息变动、服务应用热更新。
  6. 算法方面,跟踪模型种物体序号递增,导致内存递增,自清理策略。
  7. 后端代码全部API化,附加接口文档,以满足不同项目的快速应用。
  8. APP端开发,相关功能包括,告警统计(当天告警已处理、当天告警未处理、30天告警折线图、告警处理状态、告警等级)、最新告警(告警图片、告警视频、和我相关的告警、告警ID、告警时间、算法名称、处理备注)、相机状态(在线视频)、设备告警、布控任务(只能查看,不能实际布控)等。
  9. 数据持久化,支持docker+k8s,对于数据库、中间件等的volumes持久化。
  10. 集成标注训练部署平台。

核心技术指标:

包括标注数据的指标、模型的指标、平台的指标。

(1)矿山行业数据集具备数据质量高、数据量大、具备完善的标签信息。

数据标注质量:数据集中所有图像或视频片段需真实采集自煤矿井下、井口、洗选车间等实际作业场景。数据标注目标标注框与实际目标边界的平均像素误差不超过 3 个像素;类别标注需严格符合《煤矿安全规程》及行业标准,标注错误率应低于 0.5%。

数据样本量:数据集总样本量不少于 100 万张图像或 1000 小时视频数据,其中训练集、验证集、测试集按 7:1:2 比例划分。

数据均衡性:各目标类别样本数量差异不超过 3 倍,通过数据增强等方式平衡长尾分布问题。

(2)模型具有较高的准确性和召回率。

对于异常行为,如人员违规操作、设备异常运行等,精确性达到80%,召回率达到80%, F1>0.75, MAP@0.5:0.95>45%、平均 I0U≥0.6、精度≥90%。

对于煤矿场景中的人员、设备、车辆等目标,精确性达到85%,召回率达到85%, F1>0.8, MAP@0.5:0.95>50%、平均 I0U≥0.7、精度≥95%。;

对于一些关键目标,如安全帽、安全带的佩戴检测,精确性达到90%,召回率达到90%, F1>0.85, MAP@0.5:0.95>60%、平均 I0U≥0.8、精度≥95%。。

(3)视频采集要求摄像头分辨率不低于 1920×1080 像素,对于关键区域如采煤工作面、井口等,可采用更高分辨率的摄像头,如 4K(3840×2160 像素)甚至 8K 分辨率,以便更准确地监测人员操作、设备运行状态及潜在的安全隐患。为保证视频画面的流畅性,便于实时观察和分析,采集帧率通常应达到 25 帧 / 秒或 30 帧 / 秒以上。

平台应具备足够的视频传输带宽,每路 1080P 视频在 H.265 编码下,码率约为 2 - 4Mbps,4K 视频,码率可能达到 6 - 10Mbps。视频传输延迟应尽可能低,一般要求在 200 - 500 毫秒以内。

平台满足用户友好性、数据安全性、可扩展性、多屏显示支持、远程操作与控制支持等指标。整个视频监控平台的 MTBF 应不低于 10000 小时。

运维部署平台:

AI管理

为什么必须得有运维部署平台呢?

涉及到数千家煤矿的实施场景的情况,就必须考虑中心端和远程端的概念了。通过中心端实现各个节点的运维部署显得尤其关键。平台支持算法或应用上下架、 支持安装包版本管理、支持算法及应用安装与卸载、支持容器的部署跟新、支持发布跟新回滚等。

其中,拉取操作需要同时满足端侧平台自己拉取、中心端平台主动下发2种操作模式,以适应不同的需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值