DenseNet: Densely Connected Convolutional Networks

DenseNet通过引入密集连接(dense connection)改变了网络架构,使得每一层都能直接访问所有前层的特征图,减少了参数数量并缓解梯度消失问题。增长率为网络的关键参数,控制每层新增的特征图数量。这种设计不仅提高了性能,也促进了特征的高效重用。
摘要由CSDN通过智能技术生成

Densely Connected Convolutional Networks

Tags: Backbobe
作者: Gao Huang, Zhuang Liu
发表日期: 2018
引用量: 26894
星级 : ★★★★★
模型简写: DenseNet
简介: Densenet核心理念是建立前面所有层与后面层的密集连接(dense connection)
精读: Yes

Densenet核心理念是建立前面所有层与后面层的密集连接(dense connection),名称由此而来

Growth rate:

如果每个非线性变换H产生k个feature map,则第i层有 k 0 + k ( l + 1 ) k_0+k(l+1) k0+k(l+1)个feature map,其中 k 0 k_0 k0为输入层的通道数。

Dense和现有网络架构的一个重要区别是DenseNet可以有非常窄的层,例如 k = 12 k=12 k=12。将超参数 k k k作为网络的增长率(Growth rate)。

一个相对较小的增长率就足以再数据集上获得先进的性能,解释:每一层都可以访问其块中的所有前面的特征图,即可以访问网络的“集体知识”。可以把特征图看作是网络的全局状态。每一层都将自己的 k k k个特征图添加到这个状态中

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

作为CVPR2017年的Best Paper, DenseNet脱离了加深网络层数(ResNet)和加宽网络结构(Inception)来提升网络性能的定式思维,从特征的角度考虑,通过特征重用和旁路(Bypass)设置,既大幅度减少了网络的参数量,又在一定程度上缓解了gradient vanishing问题的产生.结合信息流和特征复用的假设

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值