Densely Connected Convolutional Networks
Tags: Backbobe
作者: Gao Huang, Zhuang Liu
发表日期: 2018
引用量: 26894
星级 : ★★★★★
模型简写: DenseNet
简介: Densenet核心理念是建立前面所有层与后面层的密集连接(dense connection)
精读: Yes
Densenet核心理念是建立前面所有层与后面层的密集连接(dense connection),名称由此而来
Growth rate:
如果每个非线性变换H产生k个feature map,则第i层有 k 0 + k ( l + 1 ) k_0+k(l+1) k0+k(l+1)个feature map,其中 k 0 k_0 k0为输入层的通道数。
Dense和现有网络架构的一个重要区别是DenseNet可以有非常窄的层,例如 k = 12 k=12 k=12。将超参数 k k k作为网络的增长率(Growth rate)。
一个相对较小的增长率就足以再数据集上获得先进的性能,解释:每一层都可以访问其块中的所有前面的特征图,即可以访问网络的“集体知识”。可以把特征图看作是网络的全局状态。每一层都将自己的 k k k个特征图添加到这个状态中
作为CVPR2017年的Best Paper, DenseNet脱离了加深网络层数(ResNet)和加宽网络结构(Inception)来提升网络性能的定式思维,从特征的角度考虑,通过特征重用和旁路(Bypass)设置,既大幅度减少了网络的参数量,又在一定程度上缓解了gradient vanishing问题的产生.结合信息流和特征复用的假设